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1. INTRODUCTION 

Consider the problem of providing shared access to a database organized as a 
collection of objects. We assume that certain distinguished objects, called the 
roots, are always present and access to any object other than a root is gained only 
by first accessing a root and then following pointers to that object. Any sequence 
of accesses to the database that preserves the integrity constraints of the data is 
called a transaction (see, e.g., [4]). 

If our goal is to maximize the throughput of accesses to the database, then 
there are at least two cases where highly concurrent access is desirable. 

(1) The amount of data is sufficiently great that at any given time only a fraction 
of the database can be present in primary memory, so that it is necessary to 
swap parts of the database from secondary memory as needed. 

(2) Even if the entire database can be present in primary memory, there may be 
multiple processors. 

In both cases the hardware will be underutilized if the degree of concurrency 
is too low. 

However, as is well known, unrestricted concurrent access to a shared database 
will, in general, cause the integrity of the database to b6 lost. Most current 
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approaches to this problem involve some type of locking. That is, a mechanism 
is provided whereby one process can deny certain other processes access to some 
portion of the database. In particular, a lock may be associated with each node of 
the directed graph, and any given process is required to follow some locking 
protocol so as to guarantee that no other process can ever discover any lack of 
integrity in the database temporarily caused by the given process. 

The locking approach has the following inherent disadvantages. 

(1) Lock maintenance represents an overhead that is not present in the sequential 
case. Even read-only transactions (queries), which cannot possibly affect the 
integrity of the data, must, in general, use locking in order to guarantee that 
the data being read are not modified by other transactions at the same time. 
Also, if the locking protocol is not deadlock-free, deadlock detection must be 
considered to be part of lock maintenance overhead. 

(2) There are no general-purpose deadlock-free locking protocols for databases 
that always provide high concurrency. Because of this, some research has 
been directed at developing special-purpose locking protocols for various 
special cases. For example, in the case of B-trees [l], at least nine locking 
protocols have been proposed [2, 3,9, 10, 131. 

(3) In the case that large parts of the database are on secondary memory, 
concurrency is significantly lowered whenever it is necessary to leave some 
congested node locked (a congested node is one that is often accessed, e.g., 
the root of a tree) while waiting for a secondary memory access. 

(4) To allow a transaction to abort itself when mistakes occur, locks cannot be 
released until the end of the transaction. This may again significantly lower 
concurrency. 

(5) Most important for the purposes of this paper, locking may be necessary only 
in the worst case. Consider the following simple example: The directed graph 
consists solely of roots, and each transaction involves one root only, any root 
equally likely. Then if there are n roots and two processes executing trans- 
actions at the same rate, locking is really needed (if at all) every n transac- 
tions, on the average. 

In general, one may expect the argument of (5) to hold whenever (a) the 
number of nodes in the graph is very large compared to the total number of nodes 
involved in all the running transactions at a given time, and (b) the probability 
of modifying a congested node is small. In many applications, (a) and (b) are 
designed to hold (see Section 6 for the B-tree application). 

Research directed at finding deadlock-free locking protocols may be seen as an 
attempt to lower the expense of concurrency control by eliminating transaction 
backup as a control mechanism. In this paper we consider the converse problem, 
that of eliminating locking. We propose two families of concurrency controls that 
do not use locking. These methods are “optimistic” in the sense that they rely for 
efficiency on the hope that conflicts between transactions will not occur. If (5) 
does hold, such conflict will be rare. This approach also has the advantage that 
it is completely general, applying equally well to any shared directed graph 
structure and associated access algorithms. Since locks are not used, it is deadlock- 
free (however, starvation is a possible problem, a solution for which we discuss). 
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Fig. 1. The three phases of a transaction. 

It is also possible using this approach to avoid problems (3) and (4) above. Finally, 
if the transaction pattern becomes query dominant (i.e., most transactions are 
read-only), then the concurrency control overhead becomes almost totally negli- 
gible (a partial solution to problem (1)). 

The idea behind this optimistic approach is quite simple, and may be summa- 
rized as follows. 

(1) Since reading a value or a pointer from a node can never cause a loss of 
integrity, reads are completely unrestricted (however, returning a result from 
a query is considered to be equivalent to a write, and so is subject to validation 
as discussed below). 

(2) Writes are severely restricted. It is required that any transaction consist of 
two or three phases: a read phase, a validation phase, and a possible write 
phase (see Figure 1). During the read phase, all writes take place on local 
copies of the nodes to be modified. Then, if it can be established during the 
validation phase that the changes the transaction made will not cause a loss 
of integrity, the local copies are made global in the write phase. In the case 
of a query, it must be determined that the result the query would return is 
actually correct. The step in which it is determined that the transaction will 
not cause a loss of integrity (or that it will return the correct result) is called 
validation. 

If, in a locking approach, locking is only necessary in the worst case, then in an 
optimistic approach validation will fail also only in the worst case. If validation 
does fail, the transaction will be backed up and start over again as a new 
transaction. Thus a transaction will have a write phase only if the preceding 
validation succeeds. 

In Section 2 we discuss in more detail the read and write phases of transactions. 
In Section 3 a particularly strong form of validation is presented. The correctness 
criteria used for validation are based on the notion of serial equivalence [4, 12, 
141. In the next two sections concurrency controls that rely on the serial equiva- 
lence criteria developed in Section 3 for validation are presented. The family of 
concurrency controls in Section 4 have serial final validation steps, while the 
concurrency controls of Section 5 have completely parallel validation, at however 
higher total cost. In Section 6 we analyze the application of optimistic methods 
to controlling concurrent insertions in B-trees. Section 7 contains a summary and 
a discussion of future research. 
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2. THE READ AND WRITE PHASES 

In this section we briefly discuss how the concurrency control can support the 
read and write phases of user-programmed transactions (in a manner invisible to 
the user), and how this can be implemented efficiently. The validation phase will 
be treated in the following three sections. 

We assume that an underlying system provides for the manipulation of objects 
of various types. For simplicity, assume all objects are of the same type. Objects 
are manipulated by the following procedures, where n is the name of an object, 
i is a parameter to the type manager, and v is a value of arbitrary type (v could 
be a pointer, i.e., an object name, or data): 

create create a new object and return its name. 
deZete( n) delete object n. 
read(n, i) read item i of object n and return its value. 
write (n, i, u) write u as item i of object n. 

In order to support the read and write phases of transactions we also use the 
following procedures: 

COPY( n) create a new object that is a copy of object 
n and return its name. 

exchange(n1, n2) exchange the names of objects nl and n2. 

The concurrency control is invisible to the user; transactions are written as if 
the above procedures were used directly. However, transactions are required to 
use the syntactically identical procedures tcreate, tdelete, tread, and twrite. For 
each transaction, the concurrency control maintains sets of object names accessed 
by the transaction. These sets are initialized to be empty by a tbegin call. The 
body of the user-written transaction is in fact the read phase mentioned in the 
introduction; the subsequent validation phase does not begin until after a tend 
call. The procedures tbegin and tend are shown in detail in Sections 4 and 5. The 
semantics of the remaining procedures are as follows: 

tcreate = ( 
n := create; 
create set := create set U {IL} ; 
return n) 

twrite(n, i, u) = ( 
if n E create set 

then write(n, i, u) 
else if n E write set 

then write( copies[ n], i, u) 
else ( 

m := copy(n); 
copies[ n] := m; 
write set := write set U {n); 
write (copies[n], i, u))) 

tread(n, i) = ( 
read set := read set U {n} ; 
if n E write set 

then return read (copies[ n], i) 
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else 
return read (n, i)) 

tdelete (n) = ( 
delete set := delete set U (n}). 

Above, copies is an associative vector of object names, indexed by object name. 
We see that in the read phase, no global writes take place. Instead, whenever the 
first write to a given object is requested, a copy is made, and all subsequent writes 
are directed to the copy. This copy is potentially global but is inaccessible to 
other transactions during the read phase by our convention that all nodes are 
accessed only by following pointers from a root node. If the node is a root node, 
the copy is inaccessible since it has the wrong name (all transactions “know” the 
global names of root nodes). It is assumed that no root node is created or deleted, 
that no dangling pointers are left to deleted nodes, and that created nodes become 
accessible by writing new pointers (these conditions are part of the integrity 
criteria for the data structure that each transaction is required to individually 
preserve). 

When the transaction completes, it will request its validation and write phases 
via a tend call. If validation succeeds, then the transaction enters the write phase, 
which is simply 

for n E write set do exchange ( TZ, copies[ a]). 

After the write phase all written values become “global,” all created nodes 
become accessible, and all deleted nodes become inaccessible. Of course some 
cleanup is necessary, which we do not consider to be part of the write phase since 
it does not interact with other transactions: 

(for n E delete set do delete(n); 
for n E write set do delete( copies[n])). 

This cleanup is also necessary if a transaction is aborted. 
Note that since objects are virtual (objects are referred to by name, not by 

physical address), the exchange operation, and hence the write phase, can be 
made quite fast: essentially, all that is necessary is to exchange the physical 
address parts of the two object descriptors. 

Finally, we note that the concept of two-phase transactions appears to be quite 
valuable for recovery purposes, since at the end of the read phase, all changes 
that the transaction intends to make to the data structure are known. 

3. THE VALIDATION PHASE 

A widely used criterion for verifying the correctness of concurrent execution of 
transactions has been variously called serial equivalence [4], serial reproducibility 
[ll], and linearizability [14]. This criterion may be defined as follows. 

Let transactions Tl, TX, . . . ,T, be executed concurrently. Denote an instance of 
the shared data structure by d, and let D be the set of all possible d, so that each 
Ti may be considered as a function: 

Ti:D+D. 
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If the initial data structure is diitiar and the final data structure is de,sl, the 
concurrent execution of transactions is correct if some permutation 7~ of {1,2, . . . , 
n} exists such that 

d final = TM 0 T,+l, 0 . . . 0 7’77~2) 0 Tn(l)(&itd, (1) 

where “0” is the usual notation for functional composition. 
The idea behind this correctness criterion is that, first, each transaction is 

assumed to have been written so as to individually preserve the integrity of the 
shared data structure. That is, if d satisfies all integrity criteria, then for each T,, 
Ti (d) satisfies all integrity criteria. Now, if dinitial satisfies all integrity criteria and 
the concurrent execution of T,, T2, . . . , T,, is serially equivalent, then from (l), by 
repeated application of the integrity-preserving property of each transaction, dcnal 
satisfies all integrity criteria. Serial equivalence is useful as a correctness criterion 
since it is in general much easier to verify that (a) each transaction preserves 
integrity and (b) every concurrent execution of transaction is serially equivalent 
than it is to verify directly that every concurrent execution of transactions 
preserves integrity. In fact, it has been shown in [7] that serialization is the 
weakest criterion for preserving consistency of a concurrent transaction system, 
even if complete syntactic information of the system is available to the concur- 
rency control. However, if semantic information is available, then other ap- 
proaches may be more attractive (see, e.g., [6, 81). 

3.1 Validation of Serial Equivalence 

The use of validation of serial equivalence as a concurrency control is a direct 
application of eq. (1) above. However, in order to verify (l), a permutation 7r 
must be found. This is handled by explicitly assigning each transaction T, a 
unique integer transaction number t(i) during the course of its execution. The 
meaning of transaction numbers in validation is the following: there must exist a 
serially equivalent schedule in which transaction Ti comes before transaction Tj 
whenever t(i) < t(j). This can be guaranteed by the following validation 
condition: for each transaction Tj with transaction number t(j), and for all Ti 
with t(i) < t(j); one of the following three conditions must hold (see Figure 2): 

(1) Ti completes its write phase before Tj starts its read phase. 
(2) The write set of Ti does not intersect the read set of T;, and Ti completes its 

write phase before T; starts its write phase. 
(3) The write set of Ti does not intersect the read set or the write set of Tj, and 

Ti completes its read phase before Tj completes its read phase. 

Condition (1) states that Ti actually completes before Tj starts. Condition (2) 
states that the writes of Ti do not affect the read phase of Tj, and that Ti finishes 
writing before Tj starts writing, hence does not overwrite Tj (also, note that Tj 
cannot affect the read phase of Ti). Finally, condition (3) is similar to condition 
(2) but does not require that T, finish writing before Tj starts writing; it simply 
requires that Ti not affect the read phase or the write phase of Tj (again note that 
T; cannot affect the read phase of Ti, by the last part of the condition). See [12] 
for a set of similar conditions for serialization. 
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Fig. 2. Possible interleaving of two transactions. 

3.2 Assigning Transaction Numbers 

The first consideration that arises in the design of concurrency controls that 
explicitly assign transaction numbers is the question: how should transaction 
numbers be assigned? Clearly, they should somehow be assigned in order, since 
if Ti completes before Tj starts, we must have t(i) < t(j). Here we use the simple 
solution of maintaining a global integer counter tnc (transaction number counter); 
when a transaction number is needed, the counter is incremented, and the 
resulting value returned. Also, transaction numbers must be assigned somewhere 
before validation, since the validation conditions above require knowledge of the 
transaction number of the transaction being validated. On first thought, we might 
assign transaction numbers at the beginning of the read phase; however, this is 
not optimistic (hence contrary to the philosophy of this paper) for the following 
reason. Consider the case of two transactions, Tr and T2, starting at roughly the 
same time, assigned transaction number n and n + 1, respectively. Even if Tz 
completes its read phase much earlier than Tl, before being validated TZ must 
wait for the completion of the read phase of Tl, since the validation of TZ in this 
case relies on knowledge of the write set of Tl (see Figure 3). In an optimistic 
approach, we would like for transactions to be validated immediately if at all 
possible (in order to improve response time). For these and similar considerations 
we assign transaction numbers at the end of the read phase. Note that by 
assigning transaction numbers in this fashion the last part of condition (3), that 
Ti complete its read phase before Tj completes its read phase if t(i) < t(j), is 
automatically satisfied. 

3.3 Some Practical Considerations 

Given this method for assigning transaction numbers, consider the case of a 
transaction T that has an arbitrarily long read phase. When this transaction is 
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Fig. 3. Transaction 2 waits for transaction 1 in . . 

validated, the write sets of all transactions that completed their read phase before 
T but had not yet completed their write phase at the start of T must be examined. 
Since the concurrency control can only maintain finitely many write sets, we have 
a difficulty (this difficulty does not arise if transaction numbers are assigned at 
the beginning of the read phase). Clearly, if such transactions are common, the 
assignment of transaction numbers described above is unsuitable. Of course, we 
take the optimistic approach and assume such transactions are very rare; still, a 
solution is needed. We solve this problem by only requiring the concurrency 
control to maintain some finite number of the most recent write sets where the 
number is large enough to validate almost all transactions (we say write set a is 
more recent than write set b if the transaction number associated with a is 
greater than that associated with 6). In the case of transactions like T, if old 
write sets are unavailable, validation fails, and the transaction is backed up 
(probably to the beginning). For simplicity, we present the concurrency controls 
of the next two sections as if potentially infinite vectors of write sets were 
maintained; the above convention is understood to apply. 

One last consideration must be mentioned at this point, namely, what should 
be done when validation fails? In such a case the transaction is aborted and 
restarted, receiving a new transaction number at the completion of the read 
phase. Now a new difficulty arises: what should be done in the case in which 
validation repeatedly fails? Under our optimistic assumptions this should happen 
rarely, but we still need some method for dealing with this problem when it does 
occur. A simple solution is the following. Later, we will see that transactions enter 
a short critical section during tend. If the concurrency control detects a “starving” 
transaction (this could be detected by keeping track of the number of times 
validation for a given transaction fails), the transaction can be restarted, 
but without releasing the critical section semaphore. This is equivalent to 
write-locking the entire database, and the “starving” transaction will run to 
completion. 

4. SERIAL VALIDATION 

In this section we present a family of concurrency controls that are an implemen- 
tation of validation conditions (1) and (2) of Section 3.1. Since we are not using 
condition (3), the last part of condition (2) implies that write phases must be 
serial. The simplest way to implement this is to place the assignment of a 
transaction number, validation, and the subsequent write phase all in a critical 
section. In the following, we bracket the critical section by “(” and “).” The 
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concurrency control is as follows: 

tbegin = ( 
create set := empty; 
read set := empty; 
write set := empty; 
delete set := empty; 
start tn := tnc) 

tend = ( 
(finish tn := tnc; 
valid := true; 
for t from start tn + 1 to finish tn do 

if (write set of transaction with transaction number t intersects read set) 
then valid := false; 

if valid 
then ((write phase); tnc := tnc + 1; tn := tnc)); 

if valid 
then ( cleanup ) 
else (backup)). 

In the above, the transaction is assigned a transaction number via the sequence 
tnc := tnc + 1; tn := tnc. An optimization has been made in that transaction 
numbers are assigned only if validation is successful. We may imagine that the 
transaction is “tentatively” assigned a transaction number of tnc + 1 with the 
statement finish tn := tnc, but that if validation fails, this transaction number is 
freed for use by another transaction. By condition (1) of Section 3.1, we need not 
consider transactions that have completed their write phase before the start of 
the read phase of the current transaction. This is implemented by reading tnc in 
tbegin; since a “real” assignment of a transaction number takes place only after 
the write phase, it is guaranteed at this point that all transactions with transaction 
numbers less than or equal to start tn have completed their write phase. 

The above is perfectly suitable in the case that there is one CPU and that the 
write phase can usually take place in primary memory. If the write phase often 
cannot take place in primary memory, we probably want to have concurrent write 
phases, unless the write phase is still extremely short compared to the read phase 
(which may be the case). The concurrency controls of the next section are 
appropriate for this. If there are multiple CPUs, we may wish to introduce more 
potential parallelism in the validation step (this is only necessary for efficiency if 
the processors cannot be kept busy with read phases, that is, if validation is not 
extremely short as compared to the read phase). This can be done by using the 
solution of the next section, or by the following method. At the end of the read 
phase, we immediately read tnc before entering the critical section and assign 
this value to mid tn. It is then known that at this point the write sets of 
transactions start tn + 1, start tn + 2, . . . , mid tn must certainly be examined in 
the validation step, and this can be done outside the critical section. The 
concurrency control is thus 

tend := ( 
mid tn := tnc; 
valid := true; 
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for t from start tn + 1 to mid tn do 
if (write set of transaction with transaction number t intersects read set) 

then valid := false; 
(finish tn := tnc; 
for t from mid tn + 1 to finish tn do 

if (write set of transaction with transaction number t intersects read set) 
then valid := false; 

if valid 
then (( writephase); tnc := tnc + 1; tn := tnc)); 

if valid 
then (cleanup) 
else (backup)). 

The above optimization can be carried out a second time: at the end of the 
preliminary validation step we read tnc a third time, and then, still outside the 
critical section, check the write sets of those transactions with transaction 
numbers from mid tn + 1 to this most recent value of tnc. Repeating this process, 
we derive a family of concurrency controls with varying numbers of stages of 
validation and degrees of parallelism, all of which however have a final indivisible 
validation step and write phase. The idea is to move varying parts of the work 
done in the critical section outside the critical section, allowing greater parallel- 
ism. 

Until now we have not considered the question of read-only transactions, or 
queries. Since queries do not have a write phase, it is unnecessary to assign them 
transaction numbers. It is only necessary to read tnc at the end of the read phase 
and assign its value to finish tn; validation for the query then consists of 
examining the write sets of the transactions with transaction numbers start 
tn + 1, start tn + 2, . . . , finish tn. This need not occur in a critical section, so the 
above discussion on multiple validation stages does not apply to queries. This 
method for handling queries also applies to the concurrency controls of the next 
section. Note that for query-dominant systems, validation will often be trivial: It 
may be determined that start tn = finish tn, and validation is complete. For this 
type of system an optimistic approach appears ideal. 

5. PARALLEL VALIDATION 

In this section we present a concurrency control that uses all three of the 
validation conditions of Section 3.1, thus allowing greater concurrency. We retain 
the optimization of the previous section, only assigning transaction numbers after 
the write phase if validation succeeds. As in the previous solutions, tnc is read at 
the beginning and the end of the read phase; transactions with transactions 
numbers start tn + 1, start tn + 2, . . . , finish tn all may be checked under 
condition (2) of Section 3.1. For condition (3), we maintain a set of transaction 
ids active for transactions that have completed their read phase but have not yet 
completed their write phase. The concurrency control is as follows (tbegin is as 
in the previous section): 

tend = ( 
(finish tn := tnc; 
finish active := (make a copy of active); 
active := active U { id of this transaction } ) ; 
valid := true; 

ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981. 



Optimistic Methods for Concurrency Control * 223 

for t from start tn + 1 to finish tn do 
if (write set of transaction with transaction number t intersects read set) 

then valid := false; 
for i E finish active do 

if (write set of transaction Ti intersects read set or write set) 
then valid := false; 

if valid 
then ( 

(write phase); 
(tnc := tnc + 1; 
tn := tnc; 
active := active- (id of this transaction) ) ; 
(cleanup)) 

else ( 
(active := active- { id of transaction} ) ; 
(backup))). 

In the above, at the end of the read phase active is the set of transactions that 
have been assigned “tentative” transaction numbers less than that of the trans- 
action being validated. Note that modifications to active and tnc are placed 
together in critical sections so as to maintain the invariant properties of active 
and tnc mentioned above. Entry to the first critical section is equivalent to being 
assigned a “tentative” transaction number. 

One problem with the above is that a transaction in the set finish active may 
invalidate the given transaction, even though the former transaction is itself 
invalidated. A partial solution to this is to use several stages of preliminary 
validation, in a way completely analogous to the multistage validation described 
in the previous section. At each stage, a new value of tnc is read, and transactions 
with transaction numbers up to this value are checked. The final stage then 
involves accessing active as above. The idea is to reduce the size of active by 
performing more of the validation before adding a new transaction id to active. 

Finally, a solution is possible where transactions that have been invalidated by 
a transaction in finish active wait for that transaction to either be invalidated, 
and hence ignored, or validated, causing backup (this possibility was pointed out 
by James Saxe). However, this solution involves a more sophisticated process 
communication mechanism than the binary semaphore needed to implement the 
critical sections above. 

6. ANALYSIS OF AN APPLICATION 

We have previously noted that an optimistic approach appears ideal for query- 
dominant systems. In this section we consider another promising application, 
that of supporting concurrent index operations for very large tree-structured 
indexes. In particular, we examine the use of an optimistic method for supporting 
concurrent insertions in B-trees (see [l]). Similar types of analysis and similar 
results can be expected for other types of tree-structured indexes and index 
operations. 

One consideration in analyzing the efficiency of an optimistic method is the 
expected size of read and write sets, since this relates directly to the time spent 
in the validation phase. For B-trees, we naturally choose the objects of the read 
and write sets to be the pages of the B-tree. Now even very large B-trees are only 
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a few levels deep. For example, let a B-tree of order m contain N keys. Then if 
m = 199 and N 5 2 x 10’ - 2, the depth is at most 1+ logI& N + 1)/2) < 5. Since 
insertions do not read or write more than one already existing node on a given 
level, this means that for B-trees of order 199 containing up to almost 200 million 
keys, the size of a read or write set of an insertion will never be more than 4. 
Since we are able to bound the size of read and write sets by a small constant, we 
conclude that validation will be fast, the validation time essentially being propor- 
tional to the degree of concurrency. 

Another important consideration is the time to complete the validation and 
write phases as compared to the time to complete the read phase (this point was 
mentioned in Section 4). B-trees are implemented using some paging algorithm, 
typically least recently used page replaced first. The root page and some of the 
pages on the fust level are normally in primary memory; lower level pages usually 
need to be swapped in. Since insertions always access a leaf page (here, we call a 
page on the lowest level a leaf page), a typical insertion to a B-tree of depth d will 
cause d - 1 or d - 2 secondary memory accesses. However, the validation and 
write phases should be able to take place in primary memory. Thus we expect the 
read phase to be orders of magnitude longer than the validation and write phases. 
In fact, since the “densities” of validation and write phases are so low, we believe 
that the serial validation algorithms of Section 4 should give acceptable perform- 
ance in most cases. 

Our final and most important consideration is determining how likely it is that 
one insertion will cause another concurrent insertion to be invalidated. Let the 
B-tree be of order m (m odd), have depth d, and let n be the number of leaf 
pages. Now, given two insertions I, and 12, what is the probability that the write 
set of II intersects the read set of 12? Clearly this depends on the size of the write 
set of II, and this is determined by the degree of splitting. Splitting occurs only 
when an insertion is attempted on an already full page, and results in an insertion 
to the page on the next higher level. Lacking theoretical results on the distribution 
of the number of keys in B-tree pages, we make the conservative assumption that 
the number of keys in any page is uniformly distributed between (m - 1)/2 and 
m - 1 (this is a conservative assumption since it predicts storage utilization of 75 
percent, but theoretical results do exist for storage utilization [Xl, which show 
that storage utilization is about 69 percent-since nodes are on the average 
emptier than our assumption implies, this suggests that the probability of splitting 
we use is high). We also assume that an insertion accesses any path from root to 
leaf equally likely. With these assumptions we find that the write set of 11 has size 
i with probability 

Given the size of the write set of II, an upper bound on the probability that the 
read set of I2 intersects the subtree written by II is easily derived by assuming the 
maximal number of pages in the subtree, and is 

mi-l 

PI(i) <- 
n ’ 
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Combining these, we find the probability of conflict pc satisfies 

PC = c Ps(dPd4 
lsisd 

<i (l-i&) ,Ld (ii%)‘-‘* 
For example, if d = 3, m = 199, and n = 104, we have PC < 0.0007. Thus we see 

that it is very rare that one insertion would cause another concurrent insertion to 
restart for large B-trees. 

7. CONCLUSIONS 

A great deal of research has been done on locking approaches to concurrency 
control, but as noted above, in practice two control mechanisms are used: locking 
and backup. Here we have begun to investigate solutions to concurrency control 
that rely almost entirely on the latter mechanism. We may think of the optimistic 
methods presented here as being orthogonal to locking methods in several ways. 

(1) In a locking approach, transactions are controlled by having them wait at 
certain points, while in an optimistic approach, transactions are controlled by 
backing them up. 

(2) In a locking approach, serial equivalence can be proved by partially ordering 
the transactions by first access time for each object, while in an optimistic 
approach, transactions are ordered by transaction number assignment. 

(3) The major difficulty in locking approaches is deadlock, which can be solved 
by using backup; in an optimistic approach, the major difficulty is starvation, 
which can be solved by using locking. 

We have presented two families of concurrency controls with varying degrees 
of concurrency. These methods may well be superior to locking methods for 
systems where transaction conflict is highly unlikely. Examples include query- 
dominant systems and very large tree-structured indexes. For these cases, an 
optimistic method will avoid locking overhead, and may take full advantage of a 
multiprocessor environment in the validation phase using the parallel validation 
techniques presented. Some techniques are definitely needed for determining all 
instances where an optimistic approach is better than a locking approach, and in 
such cases, which type of optimistic approach should be used. 

A more general problem is the following: Consider the case of a database 
system where transaction conflict is rare, but not rare enough to justify the use 
of any of the optimistic approaches presented here. Some type of generalized 
concurrency control is needed that provides “just the right amount” of locking 
versus backup. Ideally, this should vary as the likelihood of transaction conflict 
in the system varies. 
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