
On Optimistic Methods for Concurrency
Control

H.T. KUNG and JOHN T. ROBINSON

Carnegie-Mellon University

Most current approaches to concurrency control in database systems rely on locking of data objects
as a control mechanism. In this paper, two families of nonlocking concurrency controls are presented.
The methods used are “optimistic” in the sense that they rely mainly on transaction backup as a
control mechanism, “hoping” that conflicts between transactions will not occur. Applications for
which these methods should be more efficient than locking are discussed.

Key Words and Phrases: databases, concurrency controls, transaction processing
CR Categories: 4.32, 4.33

1. INTRODUCTION

Consider the problem of providing shared access to a database organized as a
collection of objects. We assume that certain distinguished objects, called the
roots, are always present and access to any object other than a root is gained only
by first accessing a root and then following pointers to that object. Any sequence
of accesses to the database that preserves the integrity constraints of the data is
called a transaction (see, e.g., [4]).

If our goal is to maximize the throughput of accesses to the database, then
there are at least two cases where highly concurrent access is desirable.

(1) The amount of data is sufficiently great that at any given time only a fraction
of the database can be present in primary memory, so that it is necessary to
swap parts of the database from secondary memory as needed.

(2) Even if the entire database can be present in primary memory, there may be
multiple processors.

In both cases the hardware will be underutilized if the degree of concurrency
is too low.

However, as is well known, unrestricted concurrent access to a shared database
will, in general, cause the integrity of the database to b6 lost. Most current

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This research was supported in part by the National Science Foundation under Grant MCS 78-236-76
and the Office of Naval Research under Contract NOOO14-76-C-0370.
Authors’ address: Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA
15213.
0 1981 ACM 0362-5915/81/0600~0213 $00.75

ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981, Pages 213-226.

i

214 . H. T. Kung and J. T. Robinson

approaches to this problem involve some type of locking. That is, a mechanism
is provided whereby one process can deny certain other processes access to some
portion of the database. In particular, a lock may be associated with each node of
the directed graph, and any given process is required to follow some locking
protocol so as to guarantee that no other process can ever discover any lack of
integrity in the database temporarily caused by the given process.

The locking approach has the following inherent disadvantages.

(1) Lock maintenance represents an overhead that is not present in the sequential
case. Even read-only transactions (queries), which cannot possibly affect the
integrity of the data, must, in general, use locking in order to guarantee that
the data being read are not modified by other transactions at the same time.
Also, if the locking protocol is not deadlock-free, deadlock detection must be
considered to be part of lock maintenance overhead.

(2) There are no general-purpose deadlock-free locking protocols for databases
that always provide high concurrency. Because of this, some research has
been directed at developing special-purpose locking protocols for various
special cases. For example, in the case of B-trees [l], at least nine locking
protocols have been proposed [2, 3,9, 10, 131.

(3) In the case that large parts of the database are on secondary memory,
concurrency is significantly lowered whenever it is necessary to leave some
congested node locked (a congested node is one that is often accessed, e.g.,
the root of a tree) while waiting for a secondary memory access.

(4) To allow a transaction to abort itself when mistakes occur, locks cannot be
released until the end of the transaction. This may again significantly lower
concurrency.

(5) Most important for the purposes of this paper, locking may be necessary only
in the worst case. Consider the following simple example: The directed graph
consists solely of roots, and each transaction involves one root only, any root
equally likely. Then if there are n roots and two processes executing trans-
actions at the same rate, locking is really needed (if at all) every n transac-
tions, on the average.

In general, one may expect the argument of (5) to hold whenever (a) the
number of nodes in the graph is very large compared to the total number of nodes
involved in all the running transactions at a given time, and (b) the probability
of modifying a congested node is small. In many applications, (a) and (b) are
designed to hold (see Section 6 for the B-tree application).

Research directed at finding deadlock-free locking protocols may be seen as an
attempt to lower the expense of concurrency control by eliminating transaction
backup as a control mechanism. In this paper we consider the converse problem,
that of eliminating locking. We propose two families of concurrency controls that
do not use locking. These methods are “optimistic” in the sense that they rely for
efficiency on the hope that conflicts between transactions will not occur. If (5)
does hold, such conflict will be rare. This approach also has the advantage that
it is completely general, applying equally well to any shared directed graph
structure and associated access algorithms. Since locks are not used, it is deadlock-
free (however, starvation is a possible problem, a solution for which we discuss).

ACM Transactions on Database Systems, Vol. 6, No. 2, June 1961

Optimistic Methods for Concurrency Control * 215

read validation write

\ I /

\ I I

b time

Fig. 1. The three phases of a transaction.

It is also possible using this approach to avoid problems (3) and (4) above. Finally,
if the transaction pattern becomes query dominant (i.e., most transactions are
read-only), then the concurrency control overhead becomes almost totally negli-
gible (a partial solution to problem (1)).

The idea behind this optimistic approach is quite simple, and may be summa-
rized as follows.

(1) Since reading a value or a pointer from a node can never cause a loss of
integrity, reads are completely unrestricted (however, returning a result from
a query is considered to be equivalent to a write, and so is subject to validation
as discussed below).

(2) Writes are severely restricted. It is required that any transaction consist of
two or three phases: a read phase, a validation phase, and a possible write
phase (see Figure 1). During the read phase, all writes take place on local
copies of the nodes to be modified. Then, if it can be established during the
validation phase that the changes the transaction made will not cause a loss
of integrity, the local copies are made global in the write phase. In the case
of a query, it must be determined that the result the query would return is
actually correct. The step in which it is determined that the transaction will
not cause a loss of integrity (or that it will return the correct result) is called
validation.

If, in a locking approach, locking is only necessary in the worst case, then in an
optimistic approach validation will fail also only in the worst case. If validation
does fail, the transaction will be backed up and start over again as a new
transaction. Thus a transaction will have a write phase only if the preceding
validation succeeds.

In Section 2 we discuss in more detail the read and write phases of transactions.
In Section 3 a particularly strong form of validation is presented. The correctness
criteria used for validation are based on the notion of serial equivalence [4, 12,
141. In the next two sections concurrency controls that rely on the serial equiva-
lence criteria developed in Section 3 for validation are presented. The family of
concurrency controls in Section 4 have serial final validation steps, while the
concurrency controls of Section 5 have completely parallel validation, at however
higher total cost. In Section 6 we analyze the application of optimistic methods
to controlling concurrent insertions in B-trees. Section 7 contains a summary and
a discussion of future research.

ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981.

216 * H. T. Kung and J. T. Robinson

2. THE READ AND WRITE PHASES

In this section we briefly discuss how the concurrency control can support the
read and write phases of user-programmed transactions (in a manner invisible to
the user), and how this can be implemented efficiently. The validation phase will
be treated in the following three sections.

We assume that an underlying system provides for the manipulation of objects
of various types. For simplicity, assume all objects are of the same type. Objects
are manipulated by the following procedures, where n is the name of an object,
i is a parameter to the type manager, and v is a value of arbitrary type (v could
be a pointer, i.e., an object name, or data):

create create a new object and return its name.
deZete(n) delete object n.
read(n, i) read item i of object n and return its value.
write (n, i, u) write u as item i of object n.

In order to support the read and write phases of transactions we also use the
following procedures:

COPY(n) create a new object that is a copy of object
n and return its name.

exchange(n1, n2) exchange the names of objects nl and n2.

The concurrency control is invisible to the user; transactions are written as if
the above procedures were used directly. However, transactions are required to
use the syntactically identical procedures tcreate, tdelete, tread, and twrite. For
each transaction, the concurrency control maintains sets of object names accessed
by the transaction. These sets are initialized to be empty by a tbegin call. The
body of the user-written transaction is in fact the read phase mentioned in the
introduction; the subsequent validation phase does not begin until after a tend
call. The procedures tbegin and tend are shown in detail in Sections 4 and 5. The
semantics of the remaining procedures are as follows:

tcreate = (
n := create;
create set := create set U {IL} ;
return n)

twrite(n, i, u) = (
if n E create set

then write(n, i, u)
else if n E write set

then write(copies[n], i, u)
else (

m := copy(n);
copies[n] := m;
write set := write set U {n);
write (copies[n], i, u)))

tread(n, i) = (
read set := read set U {n} ;
if n E write set

then return read (copies[n], i)

ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981

Optimistic Methods for Concurrency Control * 217

else
return read (n, i))

tdelete (n) = (
delete set := delete set U (n}).

Above, copies is an associative vector of object names, indexed by object name.
We see that in the read phase, no global writes take place. Instead, whenever the
first write to a given object is requested, a copy is made, and all subsequent writes
are directed to the copy. This copy is potentially global but is inaccessible to
other transactions during the read phase by our convention that all nodes are
accessed only by following pointers from a root node. If the node is a root node,
the copy is inaccessible since it has the wrong name (all transactions “know” the
global names of root nodes). It is assumed that no root node is created or deleted,
that no dangling pointers are left to deleted nodes, and that created nodes become
accessible by writing new pointers (these conditions are part of the integrity
criteria for the data structure that each transaction is required to individually
preserve).

When the transaction completes, it will request its validation and write phases
via a tend call. If validation succeeds, then the transaction enters the write phase,
which is simply

for n E write set do exchange (TZ, copies[a]).

After the write phase all written values become “global,” all created nodes
become accessible, and all deleted nodes become inaccessible. Of course some
cleanup is necessary, which we do not consider to be part of the write phase since
it does not interact with other transactions:

(for n E delete set do delete(n);
for n E write set do delete(copies[n])).

This cleanup is also necessary if a transaction is aborted.
Note that since objects are virtual (objects are referred to by name, not by

physical address), the exchange operation, and hence the write phase, can be
made quite fast: essentially, all that is necessary is to exchange the physical
address parts of the two object descriptors.

Finally, we note that the concept of two-phase transactions appears to be quite
valuable for recovery purposes, since at the end of the read phase, all changes
that the transaction intends to make to the data structure are known.

3. THE VALIDATION PHASE

A widely used criterion for verifying the correctness of concurrent execution of
transactions has been variously called serial equivalence [4], serial reproducibility
[ll], and linearizability [14]. This criterion may be defined as follows.

Let transactions Tl, TX, . . . ,T, be executed concurrently. Denote an instance of
the shared data structure by d, and let D be the set of all possible d, so that each
Ti may be considered as a function:

Ti:D+D.

ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981.

218 * H. T. Kung and J. T. Robinson

If the initial data structure is diitiar and the final data structure is de,sl, the
concurrent execution of transactions is correct if some permutation 7~ of {1,2, . . . ,
n} exists such that

d final = TM 0 T,+l, 0 . . . 0 7’77~2) 0 Tn(l)(&itd, (1)

where “0” is the usual notation for functional composition.
The idea behind this correctness criterion is that, first, each transaction is

assumed to have been written so as to individually preserve the integrity of the
shared data structure. That is, if d satisfies all integrity criteria, then for each T,,
Ti (d) satisfies all integrity criteria. Now, if dinitial satisfies all integrity criteria and
the concurrent execution of T,, T2, . . . , T,, is serially equivalent, then from (l), by
repeated application of the integrity-preserving property of each transaction, dcnal
satisfies all integrity criteria. Serial equivalence is useful as a correctness criterion
since it is in general much easier to verify that (a) each transaction preserves
integrity and (b) every concurrent execution of transaction is serially equivalent
than it is to verify directly that every concurrent execution of transactions
preserves integrity. In fact, it has been shown in [7] that serialization is the
weakest criterion for preserving consistency of a concurrent transaction system,
even if complete syntactic information of the system is available to the concur-
rency control. However, if semantic information is available, then other ap-
proaches may be more attractive (see, e.g., [6, 81).

3.1 Validation of Serial Equivalence

The use of validation of serial equivalence as a concurrency control is a direct
application of eq. (1) above. However, in order to verify (l), a permutation 7r
must be found. This is handled by explicitly assigning each transaction T, a
unique integer transaction number t(i) during the course of its execution. The
meaning of transaction numbers in validation is the following: there must exist a
serially equivalent schedule in which transaction Ti comes before transaction Tj
whenever t(i) < t(j). This can be guaranteed by the following validation
condition: for each transaction Tj with transaction number t(j), and for all Ti
with t(i) < t(j); one of the following three conditions must hold (see Figure 2):

(1) Ti completes its write phase before Tj starts its read phase.
(2) The write set of Ti does not intersect the read set of T;, and Ti completes its

write phase before T; starts its write phase.
(3) The write set of Ti does not intersect the read set or the write set of Tj, and

Ti completes its read phase before Tj completes its read phase.

Condition (1) states that Ti actually completes before Tj starts. Condition (2)
states that the writes of Ti do not affect the read phase of Tj, and that Ti finishes
writing before Tj starts writing, hence does not overwrite Tj (also, note that Tj
cannot affect the read phase of Ti). Finally, condition (3) is similar to condition
(2) but does not require that T, finish writing before Tj starts writing; it simply
requires that Ti not affect the read phase or the write phase of Tj (again note that
T; cannot affect the read phase of Ti, by the last part of the condition). See [12]
for a set of similar conditions for serialization.
ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981.

Optimistic Methods for Concurrency Control * 219

(2) r;.t--+-H

rj)--f--t---l

Fig. 2. Possible interleaving of two transactions.

3.2 Assigning Transaction Numbers

The first consideration that arises in the design of concurrency controls that
explicitly assign transaction numbers is the question: how should transaction
numbers be assigned? Clearly, they should somehow be assigned in order, since
if Ti completes before Tj starts, we must have t(i) < t(j). Here we use the simple
solution of maintaining a global integer counter tnc (transaction number counter);
when a transaction number is needed, the counter is incremented, and the
resulting value returned. Also, transaction numbers must be assigned somewhere
before validation, since the validation conditions above require knowledge of the
transaction number of the transaction being validated. On first thought, we might
assign transaction numbers at the beginning of the read phase; however, this is
not optimistic (hence contrary to the philosophy of this paper) for the following
reason. Consider the case of two transactions, Tr and T2, starting at roughly the
same time, assigned transaction number n and n + 1, respectively. Even if Tz
completes its read phase much earlier than Tl, before being validated TZ must
wait for the completion of the read phase of Tl, since the validation of TZ in this
case relies on knowledge of the write set of Tl (see Figure 3). In an optimistic
approach, we would like for transactions to be validated immediately if at all
possible (in order to improve response time). For these and similar considerations
we assign transaction numbers at the end of the read phase. Note that by
assigning transaction numbers in this fashion the last part of condition (3), that
Ti complete its read phase before Tj completes its read phase if t(i) < t(j), is
automatically satisfied.

3.3 Some Practical Considerations

Given this method for assigning transaction numbers, consider the case of a
transaction T that has an arbitrarily long read phase. When this transaction is

ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981.

220 * H. T. Kung and J. T. Robinson

Fig. 3. Transaction 2 waits for transaction 1 in . .

validated, the write sets of all transactions that completed their read phase before
T but had not yet completed their write phase at the start of T must be examined.
Since the concurrency control can only maintain finitely many write sets, we have
a difficulty (this difficulty does not arise if transaction numbers are assigned at
the beginning of the read phase). Clearly, if such transactions are common, the
assignment of transaction numbers described above is unsuitable. Of course, we
take the optimistic approach and assume such transactions are very rare; still, a
solution is needed. We solve this problem by only requiring the concurrency
control to maintain some finite number of the most recent write sets where the
number is large enough to validate almost all transactions (we say write set a is
more recent than write set b if the transaction number associated with a is
greater than that associated with 6). In the case of transactions like T, if old
write sets are unavailable, validation fails, and the transaction is backed up
(probably to the beginning). For simplicity, we present the concurrency controls
of the next two sections as if potentially infinite vectors of write sets were
maintained; the above convention is understood to apply.

One last consideration must be mentioned at this point, namely, what should
be done when validation fails? In such a case the transaction is aborted and
restarted, receiving a new transaction number at the completion of the read
phase. Now a new difficulty arises: what should be done in the case in which
validation repeatedly fails? Under our optimistic assumptions this should happen
rarely, but we still need some method for dealing with this problem when it does
occur. A simple solution is the following. Later, we will see that transactions enter
a short critical section during tend. If the concurrency control detects a “starving”
transaction (this could be detected by keeping track of the number of times
validation for a given transaction fails), the transaction can be restarted,
but without releasing the critical section semaphore. This is equivalent to
write-locking the entire database, and the “starving” transaction will run to
completion.

4. SERIAL VALIDATION

In this section we present a family of concurrency controls that are an implemen-
tation of validation conditions (1) and (2) of Section 3.1. Since we are not using
condition (3), the last part of condition (2) implies that write phases must be
serial. The simplest way to implement this is to place the assignment of a
transaction number, validation, and the subsequent write phase all in a critical
section. In the following, we bracket the critical section by “(” and “).” The

ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981.

Optimistic Methods for Concurrency Control 221

concurrency control is as follows:

tbegin = (
create set := empty;
read set := empty;
write set := empty;
delete set := empty;
start tn := tnc)

tend = (
(finish tn := tnc;
valid := true;
for t from start tn + 1 to finish tn do

if (write set of transaction with transaction number t intersects read set)
then valid := false;

if valid
then ((write phase); tnc := tnc + 1; tn := tnc));

if valid
then (cleanup)
else (backup)).

In the above, the transaction is assigned a transaction number via the sequence
tnc := tnc + 1; tn := tnc. An optimization has been made in that transaction
numbers are assigned only if validation is successful. We may imagine that the
transaction is “tentatively” assigned a transaction number of tnc + 1 with the
statement finish tn := tnc, but that if validation fails, this transaction number is
freed for use by another transaction. By condition (1) of Section 3.1, we need not
consider transactions that have completed their write phase before the start of
the read phase of the current transaction. This is implemented by reading tnc in
tbegin; since a “real” assignment of a transaction number takes place only after
the write phase, it is guaranteed at this point that all transactions with transaction
numbers less than or equal to start tn have completed their write phase.

The above is perfectly suitable in the case that there is one CPU and that the
write phase can usually take place in primary memory. If the write phase often
cannot take place in primary memory, we probably want to have concurrent write
phases, unless the write phase is still extremely short compared to the read phase
(which may be the case). The concurrency controls of the next section are
appropriate for this. If there are multiple CPUs, we may wish to introduce more
potential parallelism in the validation step (this is only necessary for efficiency if
the processors cannot be kept busy with read phases, that is, if validation is not
extremely short as compared to the read phase). This can be done by using the
solution of the next section, or by the following method. At the end of the read
phase, we immediately read tnc before entering the critical section and assign
this value to mid tn. It is then known that at this point the write sets of
transactions start tn + 1, start tn + 2, . . . , mid tn must certainly be examined in
the validation step, and this can be done outside the critical section. The
concurrency control is thus

tend := (
mid tn := tnc;
valid := true;

ACM Transactions on Database Systems, Vol. 6, No. 2, June i981.

222 * l-l. T. Kung and J. T. Robinson

for t from start tn + 1 to mid tn do
if (write set of transaction with transaction number t intersects read set)

then valid := false;
(finish tn := tnc;
for t from mid tn + 1 to finish tn do

if (write set of transaction with transaction number t intersects read set)
then valid := false;

if valid
then ((writephase); tnc := tnc + 1; tn := tnc));

if valid
then (cleanup)
else (backup)).

The above optimization can be carried out a second time: at the end of the
preliminary validation step we read tnc a third time, and then, still outside the
critical section, check the write sets of those transactions with transaction
numbers from mid tn + 1 to this most recent value of tnc. Repeating this process,
we derive a family of concurrency controls with varying numbers of stages of
validation and degrees of parallelism, all of which however have a final indivisible
validation step and write phase. The idea is to move varying parts of the work
done in the critical section outside the critical section, allowing greater parallel-
ism.

Until now we have not considered the question of read-only transactions, or
queries. Since queries do not have a write phase, it is unnecessary to assign them
transaction numbers. It is only necessary to read tnc at the end of the read phase
and assign its value to finish tn; validation for the query then consists of
examining the write sets of the transactions with transaction numbers start
tn + 1, start tn + 2, . . . , finish tn. This need not occur in a critical section, so the
above discussion on multiple validation stages does not apply to queries. This
method for handling queries also applies to the concurrency controls of the next
section. Note that for query-dominant systems, validation will often be trivial: It
may be determined that start tn = finish tn, and validation is complete. For this
type of system an optimistic approach appears ideal.

5. PARALLEL VALIDATION

In this section we present a concurrency control that uses all three of the
validation conditions of Section 3.1, thus allowing greater concurrency. We retain
the optimization of the previous section, only assigning transaction numbers after
the write phase if validation succeeds. As in the previous solutions, tnc is read at
the beginning and the end of the read phase; transactions with transactions
numbers start tn + 1, start tn + 2, . . . , finish tn all may be checked under
condition (2) of Section 3.1. For condition (3), we maintain a set of transaction
ids active for transactions that have completed their read phase but have not yet
completed their write phase. The concurrency control is as follows (tbegin is as
in the previous section):

tend = (
(finish tn := tnc;
finish active := (make a copy of active);
active := active U { id of this transaction }) ;
valid := true;

ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981.

Optimistic Methods for Concurrency Control * 223

for t from start tn + 1 to finish tn do
if (write set of transaction with transaction number t intersects read set)

then valid := false;
for i E finish active do

if (write set of transaction Ti intersects read set or write set)
then valid := false;

if valid
then (

(write phase);
(tnc := tnc + 1;
tn := tnc;
active := active- (id of this transaction)) ;
(cleanup))

else (
(active := active- { id of transaction}) ;
(backup))).

In the above, at the end of the read phase active is the set of transactions that
have been assigned “tentative” transaction numbers less than that of the trans-
action being validated. Note that modifications to active and tnc are placed
together in critical sections so as to maintain the invariant properties of active
and tnc mentioned above. Entry to the first critical section is equivalent to being
assigned a “tentative” transaction number.

One problem with the above is that a transaction in the set finish active may
invalidate the given transaction, even though the former transaction is itself
invalidated. A partial solution to this is to use several stages of preliminary
validation, in a way completely analogous to the multistage validation described
in the previous section. At each stage, a new value of tnc is read, and transactions
with transaction numbers up to this value are checked. The final stage then
involves accessing active as above. The idea is to reduce the size of active by
performing more of the validation before adding a new transaction id to active.

Finally, a solution is possible where transactions that have been invalidated by
a transaction in finish active wait for that transaction to either be invalidated,
and hence ignored, or validated, causing backup (this possibility was pointed out
by James Saxe). However, this solution involves a more sophisticated process
communication mechanism than the binary semaphore needed to implement the
critical sections above.

6. ANALYSIS OF AN APPLICATION

We have previously noted that an optimistic approach appears ideal for query-
dominant systems. In this section we consider another promising application,
that of supporting concurrent index operations for very large tree-structured
indexes. In particular, we examine the use of an optimistic method for supporting
concurrent insertions in B-trees (see [l]). Similar types of analysis and similar
results can be expected for other types of tree-structured indexes and index
operations.

One consideration in analyzing the efficiency of an optimistic method is the
expected size of read and write sets, since this relates directly to the time spent
in the validation phase. For B-trees, we naturally choose the objects of the read
and write sets to be the pages of the B-tree. Now even very large B-trees are only

ACM Transactions on Database Systems, Vol. 6, NO. 2, June 1981.

224 . H. T. Kung and J. T. Robinson

a few levels deep. For example, let a B-tree of order m contain N keys. Then if
m = 199 and N 5 2 x 10’ - 2, the depth is at most 1+ logI& N + 1)/2) < 5. Since
insertions do not read or write more than one already existing node on a given
level, this means that for B-trees of order 199 containing up to almost 200 million
keys, the size of a read or write set of an insertion will never be more than 4.
Since we are able to bound the size of read and write sets by a small constant, we
conclude that validation will be fast, the validation time essentially being propor-
tional to the degree of concurrency.

Another important consideration is the time to complete the validation and
write phases as compared to the time to complete the read phase (this point was
mentioned in Section 4). B-trees are implemented using some paging algorithm,
typically least recently used page replaced first. The root page and some of the
pages on the fust level are normally in primary memory; lower level pages usually
need to be swapped in. Since insertions always access a leaf page (here, we call a
page on the lowest level a leaf page), a typical insertion to a B-tree of depth d will
cause d - 1 or d - 2 secondary memory accesses. However, the validation and
write phases should be able to take place in primary memory. Thus we expect the
read phase to be orders of magnitude longer than the validation and write phases.
In fact, since the “densities” of validation and write phases are so low, we believe
that the serial validation algorithms of Section 4 should give acceptable perform-
ance in most cases.

Our final and most important consideration is determining how likely it is that
one insertion will cause another concurrent insertion to be invalidated. Let the
B-tree be of order m (m odd), have depth d, and let n be the number of leaf
pages. Now, given two insertions I, and 12, what is the probability that the write
set of II intersects the read set of 12? Clearly this depends on the size of the write
set of II, and this is determined by the degree of splitting. Splitting occurs only
when an insertion is attempted on an already full page, and results in an insertion
to the page on the next higher level. Lacking theoretical results on the distribution
of the number of keys in B-tree pages, we make the conservative assumption that
the number of keys in any page is uniformly distributed between (m - 1)/2 and
m - 1 (this is a conservative assumption since it predicts storage utilization of 75
percent, but theoretical results do exist for storage utilization [Xl, which show
that storage utilization is about 69 percent-since nodes are on the average
emptier than our assumption implies, this suggests that the probability of splitting
we use is high). We also assume that an insertion accesses any path from root to
leaf equally likely. With these assumptions we find that the write set of 11 has size
i with probability

Given the size of the write set of II, an upper bound on the probability that the
read set of I2 intersects the subtree written by II is easily derived by assuming the
maximal number of pages in the subtree, and is

mi-l

PI(i) <-
n ’

ACM Transactions on Database Systems, Vol. 6, NO. 2, June 1981.

Optimistic Methods for Concurrency Control * 225

Combining these, we find the probability of conflict pc satisfies

PC = c Ps(dPd4
lsisd

<i (l-i&) ,Ld (ii%)‘-‘*
For example, if d = 3, m = 199, and n = 104, we have PC < 0.0007. Thus we see

that it is very rare that one insertion would cause another concurrent insertion to
restart for large B-trees.

7. CONCLUSIONS

A great deal of research has been done on locking approaches to concurrency
control, but as noted above, in practice two control mechanisms are used: locking
and backup. Here we have begun to investigate solutions to concurrency control
that rely almost entirely on the latter mechanism. We may think of the optimistic
methods presented here as being orthogonal to locking methods in several ways.

(1) In a locking approach, transactions are controlled by having them wait at
certain points, while in an optimistic approach, transactions are controlled by
backing them up.

(2) In a locking approach, serial equivalence can be proved by partially ordering
the transactions by first access time for each object, while in an optimistic
approach, transactions are ordered by transaction number assignment.

(3) The major difficulty in locking approaches is deadlock, which can be solved
by using backup; in an optimistic approach, the major difficulty is starvation,
which can be solved by using locking.

We have presented two families of concurrency controls with varying degrees
of concurrency. These methods may well be superior to locking methods for
systems where transaction conflict is highly unlikely. Examples include query-
dominant systems and very large tree-structured indexes. For these cases, an
optimistic method will avoid locking overhead, and may take full advantage of a
multiprocessor environment in the validation phase using the parallel validation
techniques presented. Some techniques are definitely needed for determining all
instances where an optimistic approach is better than a locking approach, and in
such cases, which type of optimistic approach should be used.

A more general problem is the following: Consider the case of a database
system where transaction conflict is rare, but not rare enough to justify the use
of any of the optimistic approaches presented here. Some type of generalized
concurrency control is needed that provides “just the right amount” of locking
versus backup. Ideally, this should vary as the likelihood of transaction conflict
in the system varies.

REFERENCES

1. BAYER, FL, AND MCCREIGHT, E. Organization and maintenance of large ordered indexes. Acta
Znf 1, 3 (1972), 173-189.

2. BAYER, R., AND SCHKOLNICK, M. Concurrency of operations on B-trees. Acta In& 9, 1 (1977),

1-21.

ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981.

226 * H. T. Kung and J. T. Robinson

3. ELLIS, C. S. Concurrency search and insertion in 2-3 trees. Acta Inf 24, 1 (1980), 63-86.
4. ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND TRAIGER, I. L. The notions of consistency and

predicate locks in a database system. Commun. ACM 19, 11 (Nov. 1976), 624-633.
5. GRAY, J. Notes on database operating systems. In Lecture Notes in Computer Science 60:

Operating Systems, R. Bayer, R. M. Graham, and G. Seegmuller, Eds. Springer-Verlag, Berlin,
1978, pp. 393-481.

6. KUNG, H. T., AND LEHMAN, P. L. Concurrent manipulation of binary search trees. ACM Trans.
Database Syst. 5, 3 (Sept. 1980), 354-382.

7. KUNG, H. T., AND PAPADIMITRIOU, C. H. An optimality theory of concurrency control for
databases. In Proc. ACM SIGMOD 1979 Znt. Conf. Management ofData, May 1979, pp. 116-126.

8. LAMPORT, L. Towards a theory of correctness for multi-user data base systems. Tech. Rep. CA-
7610-0712, Massachusetts Computer Associates, Inc., Wakefield, Mass., Oct. 1976.

9. LEHMAN, P. L., AND YAO, S. B. Efficient locking for concurrent operations on B-trees. Submitted
for publication.

10. MILLER, R. E., AND SNYDER, L. Multiple access to B-trees. Presented at Proc. Conf. Information
Sciences and Systems, Johns Hopkins Univ., Baltimore, Md., Mar. 1978.

11. PAPADIMITRIOU, C. H., BERNSTEIN, P. A., AND ROTHNIE, J. B. Computational problems related
to database concurrency control. In Conf. Theoretical Computer Science, Univ. Waterloo, 1977,
pp. 275-282.

12. PAPADIMITRIOU, C. H. Serializability of concurrent updates. J. ACM 26,4 (Oct. 1979), 631-653.
13. SAMADI, B. B-trees in a system with multiple users. Inf. Process. Lett. 5,4 (Oct. 1976), 107-112.
14. STEARNS, R. E., LEWIS, P. M., II, AND ROSENKRANTZ, D. J. Concurrency control for database

systems. In Proc. 7th Symp. Foundations of Computer Science, 1976, pp. 19-32.
15. YAO, A. On random 2-3 trees. Acta Ini 2,9 (1978), 159-170.

Received May 1979; revised July 1980; accepted September 1980

ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981.

