Big Data & Al Systems



Scope: End-to-end Al systems

Topics: LLMs, Context, Agents, RAG
Inspiration: Research + Industry

Technical: Storage/Computation/Self-designing

Projects:

Systems (LLM core, or design)
Research (LLM compiler, RAG, Image,
Fine-tuning, Context Management)
Research is open to 165 & systems
students but eventually open to all

Timeline:

[ " —

5 weeks of introduction

then reading research papers

Goals: Develop

0 an "Al systems person”

Info: http://daslab.seas.harvard.edu/classes/cs265/
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End-to-End Al System Architecture
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=== |ndustry Evolution Path

o
Systems of
a Intelligence
FULL INTEGRATION
Complex orchestration
Custom ML Models
DOMAIN-SPECIFIC Al
S Tailored intelligence
Core Automation
o BUSINESS USE CASES
Mission-critical functions
Productivity
Automation
1 BASIC AGENTS

Workflow efficiency

Analytics
INSIGHT & REPORTING

Business intelligence
Data Foundation

STORE & MANAGE MATURITY JOURNEY -

Data-first approach



USE Al AGGRESSIVELY, BUT NEVER OUTSOURCGE THE HARD PART

The Equation of Learning

Struggle + Effort + Repetition = Friction + Pattern Recognition = Unique Learning + Skills
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USE Al AGGRESSIVELY, BUT NEVER OUTSOURCGE THE HARD PART

The Equation of Learning

Struggle + Effort + Repetition = Friction + Pattern Recognition = Unique Learning + Skills

Every time you push through confusion, you're building irreducible intellectual capital

It Al removes friction before your brain has learned from it,

& DASIab you've traded learning for convenience
*@ Harvard SEAS




CPU

need to only read x...

but have to read all of page 1

data value x

N\
o X X 3

page pagez page3

on board cache
memory

data move
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query x<o

(size=120 bytes)
memory level N

memory level N-1

51064120 28976 711396

page size: 5x8 bytes
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query x<o

scan

. 51064 12
(size=120 bytes)

memory level N

memory level N-1

GrED &) GIEED .

page size: 5x8 bytes
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query x<o

scan

. 51064 12 4
(size=120 bytes)

memory level N

memory level N-1

Girp €& GEErD .

page size: 5x8 bytes
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PN
% 40 bytes

query x<o

scan

. 51064 12 4
(size=120 bytes)

memory level N

memory level N-1

Gr3D E&XI) GEErL

page size: 5x8 bytes
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| PN
(ﬁ.?/ 40 bytes

query x<o

SCall > ’

| 5106412 28976 M4
(size=120 bytes)

memory level N

memory level N-1

GIED & GIEED ..

page size: 5x8 bytes
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| PN
(ﬁ.?/ 40 bytes

query x<o

SCall > ’

| 5106412 K 28976 42
(size=120 bytes)

memory level N

memory level N-1

GIED & GIEED ..

page size: 5x8 bytes
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™
i} 80 bytes

query x<o

SCall > ’

| 5106412 K 28976 42
(size=120 bytes)

memory level N

memory level N-1

GIED & GIEED ..

page size: 5x8 bytes
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S
% 80 bytes

query x<o

. 28976
(size=120 bytes)

memory level N

memory level N-1

51064120 28976 X 711396

page size: 5x8 bytes

WDASIab
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™S
% 80 bytes

query x<5

SCdal

(size=120 bytes) /11396 28970

memory level N

memory level N-1

510064 12 289706 /1139606

page size: 5x8 bytes
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YN
% 80 bytes

query x<5

SCdal

(size=120 bytes) CAMMEAD CRAEAS

memory level N

memory level N-1

5106412 28976 M 711396

page size: 5x8 bytes
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|
% 120 bytes

query x<5

SCdal

(size=120 bytes) CAMMEAD CRAEAS

memory level N

memory level N-1

5106412 28976 M 711396

page size: 5x8 bytes
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an oracle gives us the positions

query x<5

(size=120 bytes)
memory level N

memory level N-1

5106412 28970 /113960

page size: 5x8 bytes
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an oracle gives us the positions

query x<5

oracle

. 51064 12
(size=120 bytes)

memory level N

memory level N-1

51064 12 28970 /11390 e

page size: 5x8 bytes

WDASIab

@ Harvard SEAS



an oracle gives us the positions

query x<5

oracle

(size=120 bytes)

memory level N

memory level N-1

51064 12 28970 /11390 e

page size: 5x8 bytes
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™S
an oracle gives us the positions %-?/ 40 bytes

query x<5

oracle

(size=120 bytes)

memory level N

memory level N-1

51064 12 28970 /11390 e

page size: 5x8 bytes
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™S
an oracle gives us the positions ﬁf/ 40 bytes

query x<5

oracle oracle

SR 5 06 4 12l 28976

memory level N

memory level N-1

51064 12K 28976 X 711396 1S

page size: 5x8 bytes
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an oracle gives us the positions ﬁf/ 40 bytes

query x<5

oracle oracle

SR 5 06 4 12l 28976

memory level N

memory level N-1

51064 12K 28976 X 711396 1S

page size: 5x8 bytes
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™S
an oracle gives us the positions ﬁ;/ 80 bytes

query x<5

oracle oracle

SR 5 06 4 12l 28976

memory level N

memory level N-1

51064 12K 28976 X 711396 1S

page size: 5x8 bytes
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™S
an oracle gives us the positions %-;»/ 80 bytes

query x<5

(size=120 bytes)

memory level N

memory level N-1

51064 12K 28976 X 711396 1S

page size: 5x8 bytes
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™S
an oracle gives us the positions ﬁ;/ 80 bytes

query x<5

oracle

(size=120 bytes) /11396 28970

memory level N

memory level N-1

51064 12K 28976 X 711396 1S

page size: 5x8 bytes
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™S
an oracle gives us the positions ﬁ;/ 80 bytes

query x<5

oracle

(size=120 bytes) CAMMEAD CRAEAS

memory level N

memory level N-1

51064 12K 28976 X 711396 1S

page size: 5x8 bytes
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™S
an oracle gives us the positions w120 bytes

query x<5

oracle

(size=120 bytes) CAMMEAD CRAEAS

memory level N

memory level N-1

51064 12K 28976 X 711396 1S

page size: 5x8 bytes
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when does It make sense to have an oracle
how can we minimize the cost @

e.gd., query x<o

5106412 28970 /113960
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algorithm/system design = not just computation
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algorithm/system design = not just computation

Is there maybe a perfect system? Nope...
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INntro Into high-level ideas for
Self-designing Systems
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The problem: as the big data/Al world keeps changing...
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The problem: as the big data/Al world keeps changing...

there Is a continuous need for new data systems
put it Is extremely hard to design & build new systems
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How do we design a system that is X times faster for a workload W
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How do we design a system that is X times faster for a workload W “

How do we design a system that allows for control of cloud cost”

il




How do we design a system that is X times faster for a workload W “

How do we design a system that allows for control of cloud cost”

What happens if we introduce new application feature Y

Should we upgrade to new version Z7?

What will break our system®?

. e
g i
g :’::7 1:‘.“}: |x‘)‘ .




BOTTLENECK: SUB-OPTIMAL SYSTEMS

What happens if we introduce new application feature Y 0‘

Should we upgrade to new version Z7?

What will break our system?




BOTTLENECK: SUB-OPTIMAL SYSTEMS

nuge cloud cost

environmental iImpact




BOTTLENECK: SUB-OPTIMAL SYSTEMS

expensive transitions

nuge cloud cost

environmental iImpact




BOTTLENECK: SUB-OPTIMAL SYSTEMS

expensive transitions

nuge cloud cost

application tfeasibility
environmental iImpact




BOTTLENECK: SUB-OPTIMAL SYSTEMS

huge cloud cost  expensive transitions application feasibility environmental impact

complexity

now we BUILD systems
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BUILD

GET N EXPERT DESIGNERS

GIVE THEM T TIME

HOPE FOR THE BEST




BUILD

GET N EXPERT DESIGNERS

GIVE THEM T TIME

HOPE FOR THE BEST




Design: 6-7 years 8
Reasoning: months/impossible

GET N EXPERT DESIGNERS

GIVE THEM T TIME
HOPE FOR THE BEST ‘







ble

data _,
hardware /
applications V4

Re POSSI
\ y




1 design/research skills do not scale

applications
systems

data

design skills

years years
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2 no one knows everything out there

# of citations

103 B0 8
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2000

2002

2004

2000

2008

2010

2012

2014

NoSQL storage

P. O’Neil, E. Cheng, D. Gawlick, E, O'Neil
The log-structured merge-tree (LSM-tree)
Acta Informatica 33 (4): 351-385, 1996



2 no one knows everything out there

100

30

. Google NoSQL storage

BigTable

P. O’Neil, E. Cheng, D. Gawlick, E, O'Neil
The log-structured merge-tree (LSM-tree)
Acta Informatica 33 (4): 351-385, 1996

# of citations

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
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standard “solution” ( (1]

(('

expose knobs



Some possible ideas
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Some possible ideas

1. Aren’t data systems already “adaptive”, e.g., optimizer makes the best online decision?
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Some possible ideas

1. Aren’t data systems already “adaptive”, e.g., optimizer makes the best online decision?
Yes, but only around a narrow design space.

DFISlab

@ Harvard SEAS



Some possible ideas

1. Aren’t data systems already “adaptive”, e.g., optimizer makes the best online decision?
Yes, but only around a narrow design space.

2. Aren’t adaptive data systems architectures able to adapt to new applications?
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Some possible ideas

1. Aren’t data systems already “adaptive”, e.g., optimizer makes the best online decision?
Yes, but only around a narrow design space.

2. Aren’t adaptive data systems architectures able to adapt to new applications?
Yes, better than #1 (e.g., query adaptivity), but still only around a narrow design space.
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Some possible ideas
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Yes, but only around a narrow design space.
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Yes, better than #1 (e.g., query adaptivity), but still only around a narrow design space.

3. Aren’t learned system components able to adapt even more?
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Some possible ideas

1. Aren’t data systems already “adaptive”, e.g., optimizer makes the best online decision?
Yes, but only around a narrow design space.

2. Aren’t adaptive data systems architectures able to adapt to new applications?
Yes, better than #1 (e.g., query adaptivity), but still only around a narrow design space.

3. Aren’t learned system components able to adapt even more?
Yes, better than #2 (e.qg., data adaptivity), but still only around a narrow design space.

4. Can’t we just throw ML into the problem? ChatGPT?
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Some possible ideas

1. Aren’t data systems already “adaptive”, e.g., optimizer makes the best online decision?
Yes, but only around a narrow design space.

2. Aren’t adaptive data systems architectures able to adapt to new applications?
Yes, better than #1 (e.g., query adaptivity), but still only around a narrow design space.

3. Aren’t learned system components able to adapt even more?
Yes, better than #2 (e.qg., data adaptivity), but still only around a narrow design space.

4. Can’t we just throw ML into the problem? ChatGPT?
Yes, but the programming design space Is massive. A correct design Is not a desired one.
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Some possible ideas

1. Aren’t data systems already “adaptive”, e.g., optimizer makes the best online decision?
Yes, but only around a narrow design space.

2. Aren’t adaptive data systems architectures able to adapt to new applications?
Yes, better than #1 (e.g., query adaptivity), but still only around a narrow design space.

3. Aren’t learned system components able to adapt even more?
Yes, better than #2 (e.qg., data adaptivity), but still only around a narrow design space.

4. Can’t we just throw ML into the problem? ChatGPT?
Yes, but the programming design space Is massive. A correct design Is not a desired one.

These Ideas can lead to better systems but we need something more to

FIND FAST THE BEST POSSIBLE DESIGN




SELF-DESIGNING SYSTEMS

Automatically invent & build the perfect system for any new application
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massive design space of system designs
® @ @

DFISlab

@ Harvard SEAS



| '*'* system= "\
PN asetoflowlevel

® \ design decisions /

4 - A
‘ ’
4

@
massive design space of system designs
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massive design space of system designs
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#-*-* /~ system=
few existing designs -*-‘-*- a set of low-level }
\.design decisions /

massive design space of system designs
® @ ®
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massive design space of system designs

reasoning: understand all the /

design decisions & thelr impaot‘
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data types

HOW
DO WE
START o
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EDBT 2016

no perfect structure S
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EDBT 2016
SIGMOD 2016




EDBT 2016
SIGMOD 2016
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update o

DFISlab

@ Harvard SEAS



point read range read

update memory
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point read range read

update

_~Tmemory

insert o delete
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ALGORITHMS
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SYSTEMS

A A A A A A
G - Em = .

ALGORITHMS

DATA
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NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE

buffer
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NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE

fences

filters

buffer




NoSQL systems are the backbone of the BigData and Al era
L SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN

KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE
_ filters \‘ fences |
buffer ) N N 7\ cache

diverse
data structures
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NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE

. filters ) ( fences ) ,
buffer N cache

diverse . |
INteractions
data structures
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NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE

. filters ) ( fences ) ,
buffer . -~ | cache

diverse . |
INteractions hardware
data structures
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NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE

 filters ) ( fences )
buffer .\ cache

| ropustness
diverse . . |
INnteractions hardware parallelism cloud cost
data structures S| As

There exist numerous variations of NoSQL KV-stores
LSM-tree variants, B-trees (MongoDB), Hash-index (Microsoft)
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| ropustness
diverse . . |
INnteractions hardware parallelism cloud cost
data structures S| As

There exist numerous variations of NoSQL KV-stores
LSM-tree variants, B-trees (MongoDB), Hash-index (Microsoft)



Constant and increasing efforts
for new system designs as

%@ applications & hardware change

%

| ropustness
diverse . . |
INnteractions hardware parallelism cloud cost
data structures S| As

There exist numerous variations of NoSQL KV-stores
LSM-tree variants, B-trees (MongoDB), Hash-index (Microsoft)



robustness

Interactions hardware parallelism cloud cost
SLAS

diverse

data structures

Requirements/Goals
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. ropustness
diverse . . |
INnteractions hardware parallelism cloud cost
data structures S| As

Requirements/Goals  Context
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diverse
data structures

INnteractions hardware parallelism
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robustness

cloud cost
SLAS

diverse
data structures

INnteractions hardware parallelism

Requirements/Goals  Context

SYSTEM

design & code
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AUTO DESIGN




Rob Tarjan, Turing Award 1986
/S THERE A CALCULUS OF DATA STRUCTURES

Dy which one can choose the appropriate representation

and techniques for a given problem?” (SIAM,1978)
[P vs NP, average case, constant factors vs asymptotic, low bounds]
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@;Hawardlgg | IS THERE A CALCULUS OF SYSTEMS?

Rob Tarjan, Turing Award 1986
. ‘1S THERE A CALCULUS OF DATA STRUCTURES

Dy which one can choose the appropriate representation

and techniques for a given problem?” (SIAM,1978)
[P vs NF, average case, constant factors vs asymptotic, low bounds]
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the grammar of systems design

action Is ol
the most 'Y Of
form
ultimate theory

-~
grammar/

\
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the grammar of systems design

action Is ol
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ultimate theory
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| hope for nothing

| fear nothing
alphabet prinCipleS /am free

words data structures

Nikos Kazantzakis, philosopher



the grammar of systems design

action Is ol
the most 'Y Of
form
ultimate theory

NEW

| hope for nothing

| fear nothing
alphabet prinCipleS /am free

grammar/
sentences

Interactions

words data structures

Nikos Kazantzakis, philosopher



the grammar of systems design

action Is ol
the most 'Y Of
form
theory

which are “all”
possIble systems

| ~ we may ever invent?

grammar/
sentences

interactions
| hope for nothing

| fear nothing
alphabet prinCipleS /am free

words data structures

Nikos Kazantzakis, philosopher



é

PERFORMANCE |
DESIGN SPACE | S T | FIND BEST DESIGN




PERPETUAL
LEARNING
POSSIBLE

%N
i
‘1
‘3? (
3
b
!
HI
!
§
/.'
:7' ‘ .
!
i
3
)
N
N h

PERFORMANCE

DESIGN SPACE | Cormarion | FIND BEST DESIGN



SIGMOD’18

MORE DATA STRUCTURES
THAN STARS IN THE SKY (__

(The most fundamental component of computer science/Al)

>1048

| terature Stars FPossipllities VWe Discovereo



10-100X FASTER SYSTEMS

Limousine: NoSQL KV-Store Image Galculator: Image Al TorchTitan with PyTorch@META

Agents’ context management,

but also all kinds of big data infra Storage for Training and Infenence Large Model Training Algorithms

i G

SIGMOD24, VLDB'22 SIGMOD24, CIDR25 MLsys 2023, ICLR'25




Now doing the same with RAG, Agents, LLMs, ...
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NoSQL | Neural Networks | Image AI | LLMs | Data Science



