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Scope: End-to-end AI systems 
Topics: LLMs, Context, Agents, RAG 
Inspiration: Research + Industry 
Technical: Storage/Computation/Self-designing 
Projects:  

Systems (LLM core, or design) 
Research (LLM compiler, RAG, Image, 
Fine-tuning, Context Management) 
Research is open to 165 & systems 
students but eventually open to all  

Timeline:  
5 weeks of introduction  
then reading research papers 

Goals: Develop to an “AI systems person”  
Info: http://daslab.seas.harvard.edu/classes/cs265/ 
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The Equation of Learning
Struggle + Effort + Repetition = Friction + Pattern Recognition = Unique Learning + Skills

USE AI AGGRESSIVELY, BUT NEVER OUTSOURCE THE HARD PART

Every time you push through confusion, you’re building irreducible intellectual capital

If AI removes friction before your brain has learned from it,  
you’ve traded learning for convenience
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when does it make sense to have an oracle
how can we minimize the cost
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e.g., query x<5
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algorithm/system design = not just computation

Is there maybe a perfect system? Nope…



Intro into high-level ideas for 
Self-designing Systems
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there is a continuous need for new data systems  
but it is extremely hard to design & build new systems

The problem: as the big data/AI world keeps changing…
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How do I make my data system run X times faster?

How do I control my bill on the cloud?

NEED TO DESIGN NEW DATA SYSTEMS

BOTTLENECK: SUB-OPTIMAL SYSTEMS 

how we            systemsBUILD
complexity

huge cloud cost expensive transitions environmental impact application feasibility 
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applications
systems

1 design/research skills do not scale
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         THE HIPPO METHOD
             "HIGHEST PAID PERSON'S OPINION”



standard “solution” 

expose knobs
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1. Aren’t data systems already “adaptive”, e.g., optimizer makes the best online decision? 

2. Aren’t adaptive data systems architectures able to adapt to new applications?

4. Can’t we just throw ML into the problem? ChatGPT?

3. Aren’t learned system components able to adapt even more?

Some possible ideas

Yes, but only around a narrow design space.

Yes, better than #1 (e.g., query adaptivity), but still only around a narrow design space.

Yes, better than #2 (e.g., data adaptivity), but still only around a narrow design space.

Yes, but the programming design space is massive. A correct design is not a desired one.

FIND FAST THE BEST POSSIBLE DESIGN
These ideas can lead to better systems but we need something more to



SELF-DESIGNING SYSTEMS
Automatically invent & build the perfect system for any new application 
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massive design space of system designs 

reasoning: understand all the 
design decisions & their impact

cloud budgetworkload
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cloud
optimizer
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multi-tenancy
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“IS THERE A CALCULUS OF DATA STRUCTURES 
by which one can choose the appropriate representation  

and techniques for a given problem?” (SIAM,1978)

Rob Tarjan, Turing Award 1986

[P vs NP, average case, constant factors vs asymptotic, low bounds]

IS THERE A CALCULUS OF SYSTEMS? 



the grammar of systems design



Nikos Kazantzakis, philosopher

hope
for nothing

I
fear freeam

the holyis
of

ultimate

action

form
theory

most

II

nothing
the grammar of systems design



the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

holy
of

form
most

the grammar of systems design



the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

holy
of

form
most

alphabet

the grammar of systems design



the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

holy
of

form
most

alphabet

words

the grammar of systems design



the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

holy
of

form
most

alphabet

grammar/
sentences

words

the grammar of systems design



the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

holy
of

form
most

alphabet

grammar/
sentences

words

principles

the grammar of systems design



the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

holy
of

form
most

alphabet

grammar/
sentences

words

principles

data structures

the grammar of systems design



the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

holy
of

form
most

alphabet

grammar/
sentences

words

principles

data structures

interactions

the grammar of systems design



the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

NEW

holy
of

form
most

alphabet

grammar/
sentences

words

principles

data structures

interactions

the grammar of systems design



interactions

data structures

principles

the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

holy
of

form
most

alphabet

grammar/
sentences

words

principles

data structures

interactions

which are “all” 
possible systems  

we may ever invent?

the grammar of systems design



DESIGN SPACE FIND BEST DESIGN PERFORMANCE 
ESTIMATION 



DESIGN SPACE FIND BEST DESIGN PERFORMANCE 
ESTIMATION 

PERPETUAL  
LEARNING  
POSSIBLE

Designs

Training 

Data



Literature

MORE DATA STRUCTURES  
THAN STARS IN THE SKY

1024

>1048
SIGMOD’18

5x103

Stars Possibilities We Discovered

(The most fundamental component of computer science/AI)



10-100X FASTER SYSTEMS

SIGMOD’24, VLDB’22

Limousine: NoSQL KV-Store
Agents’ context management, 


but also all kinds of big data infra

SIGMOD’24, CIDR‘25

Image Calculator: Image AI

Storage for Training and Infenence

MLsys 2023, ICLR’25

TorchTitan with PyTorch@META

Large Model Training Algorithms



Now doing the same with RAG, Agents, LLMs, …



Stratos Idreos


