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Today: 
Go quickly over logistics again 


Intro to self-designing systems concept


Very high-level intro into NoSQL Big Data Systems (key-value stores)
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register  = this room 

disk = Pluto 
memory = nearby city

Jim Gray, Turing Award 1998

caches = this city 
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A system is a complex 
set of components 

interacting in harmony 
depending on the context

exposing as little as possible
complexity to users



declarative interface

ask ‘’what’’ you want

data* system

the system decides 

“how” to best store 

and access data
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How do I make my data system run x times as fast?

How do I minimize my bill in the cloud?

How do I train my neural network/LLM x times faster?

How to accelerate statistics computation for data science/ML?

(sql,nosql,bigdata, …)

How can I do 10x Image AI inference?



Is there maybe a perfect system? Nope…
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Fundamentals of storage 
learning outcome

data structures, SQL, NoSQL, Neural Networks, Data Science, Images, LLMs

Self-designing systems
Automated system design: cloud cost, hardware, data & app requirements



first 4-5 weeks: Stratos/Sanket/Utku
Basic background

Self-designing systems

Neural network systems

Image AI systems

Research thinking 

afterwards:
Students present research papers

One paper per class (ML systems)

In-class research/systems discussion 

Research reviews

Research/systems projects 



Recent Research Papers

review and slides should focus on
 

what is the problem 

why is it important


why is it hard 

why existing solutions do not work 


what is the core intuition for the solution

solution step by step


does the paper prove its claims

exact setup of analysis/experiments

are there any gaps in the logic/proof


possible next steps

* follow a few citations to gain more background

Each student: 

2 reviews per week/1 presentation  



Recent Research Papers

review and slides should focus on
 

what is the problem 

why is it important


why is it hard 

why existing solutions do not work 


what is the core intuition for the solution

solution step by step


does the paper prove its claims

exact setup of analysis/experiments

are there any gaps in the logic/proof


possible next steps

* follow a few citations to gain more background

Each student: 

2 reviews per week/1 presentation  

learn to judge constructively

learn to present

learn to prepare slides
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Questions on logistics?



Self-designing Systems



The problem: as the big data/AI world keeps changing…



there is a continuous need for new data systems 

but it is extremely hard to design & build new systems

The problem: as the big data/AI world keeps changing…
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How do I make my data system run X times faster?

How do I control my bill on the cloud?

NEED TO DESIGN NEW DATA SYSTEMS

BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS 

how we            systemsBUILD
complexity

huge cloud cost expensive transitions environmental impact application feasibility 
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applications
systems

1 design/research skills do not scale
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BigTable NoSQL storage

2 no one knows everything out there



         THE HIPPO METHOD
             "HIGHEST PAID PERSON'S OPINION”



standard “solution” 

expose knobs



Some possible ideas
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1. Aren’t data systems already “adaptive”, e.g., optimizer makes the best online decision? 

2. Aren’t adaptive data systems architectures able to adapt to new applications?

4. Can’t we just throw ML into the problem? ChatGPT?

3. Aren’t learned system components able to adapt even more?

Some possible ideas

Yes, but only around a narrow design space.

Yes, better than #1 (e.g., query adaptivity), but still only around a narrow design space.

Yes, better than #2 (e.g., data adaptivity), but still only around a narrow design space.

Yes, but the programming design space is massive. A correct design is not a desired one.

FIND FAST THE BEST POSSIBLE DESIGN
These ideas can lead to better systems but we need something more to



SELF-DESIGNING SYSTEMS
Automatically invent & build the perfect system for any new application 



massive design space of system designs 



massive design space of system designs 

system=

a set of low-level

design decisions



massive design space of system designs 

few existing designs
system=


a set of low-level

design decisions



massive design space of system designs 

few existing designs
system=


a set of low-level

design decisions

cloud
budgetworkload



massive design space of system designs 

reasoning: understand all the

design decisions & their impact

cloud
budgetworkload
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——START——

concurrency

data types

hardware

robustness

complex

operations

cloud
optimizer

indexing

SLAs

multi-tenancy
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DATA

INDEX

data structure decisions define 

the algorithms that access data

ALGORITHMS
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[7,4,2,6,1,3,9,10,5,8] 

ALGORITHMS
[1,2,3,4,5,6,7,8,9,10] 

unordered

ordered
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differential approximate
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tree

no perfect structure

amplification

EDBT 2016 

SIGMOD 2016
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point read

update

memory

range read

deleteinsert
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Constant and increasing efforts  

for new system designs as 
applications & hardware change
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by which one can choose the appropriate representation 


and techniques for a given problem?” (SIAM,1978)

Rob Tarjan, Turing Award 1986

[P vs NP, average case, constant factors vs asymptotic, low bounds]

IS THERE A CALCULUS OF DATA SYSTEMS? 
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possible data systems 

we may ever invent?
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Trillions of possible data structures
Data Calculator @SIGMOD 2018

New NoSQL systems: 1000x faster
Cosine @PVLDB 2022 and Limousine @SIGMOD 2024

Synthesized statistics, 10x faster ML
Data Canopy @SIGMOD 2017

10x faster Neural Networks
MotherNets @MLSys 2020,  and M2 @MLSys 2023

10x faster Image AI
Image Calculator, SIGMOD 2024



Check out: syllabus, preparation readings, 

project 0, systems project 1, online sections

http://daslab.seas.harvard.edu/classes/cs265/

Get familiar with the very basics of traditional database architectures:
Architecture of a Database System. By J. Hellerstein, M. Stonebraker and J. 
Hamilton. Foundations and Trends in Databases, 2007


Get familiar with very basics of modern database architectures:
The Design and Implementation of Modern Column-store Database Systems.  
By D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, S. Madden. Foundations 
and Trends in Databases, 2013


Get familiar with the very basics of modern large scale systems:
Massively Parallel Databases and MapReduce Systems. By Shivnath Babu 
and Herodotos Herodotou.  Foundations and Trends in Databases, 2013


http://mvdirona.com/jrh/perspectives/content/binary/ArchitectureOfDatabaseSystem.pdf%22%20%5Ct%20%22_blank
http://stratos.seas.harvard.edu/publications/design-and-implementation-modern-column-oriented-database-systems%22%20%5Ct%20%22_blank


Here is my data and inference requests. 

Design and implement and implement an LLM for my budget?


Nvidia released a new GPU. 

Should we invest in the new hardware for our cluster of Image AI systems?


We are preparing to release a new feature for our social network application.

Should we redesign and reimplement our underlying key-value store?


….



Stratos Idreos


