Stratos Idreos BIG DATA SYSTEMS

NoSQL | Neural Networks | Image AI | LLMs | Data Science

Today:

Go quickly over logistics again

Intro to self-designing systems concept

Very high-level intro into NoSQL Big Data Systems (key-value stores)

algorithm/system design = not just computation data movement is the key

50-80% of end-to-end time is due to storage-related decisions

algorithm/system design = not just computation data movement is the key

50-80% of end-to-end time is due to storage-related decisions

DATA STRUCTURES PERFORMANCE

register = this room caches = this city

memory = nearby city

disk = Pluto

Jim Gray, Turing Award 1998

What is a data system?

A data system is an end-to-end software system that: manages storage, data movement, and provides access to data

What is a data system?

A data system is an end-to-end software system that: manages storage, data movement, and provides access to data

A system is a complex set of components

interacting in harmony depending on the context

exposing as little as possible complexity to users

declarative interface ask "what" you want

data* system

the system decides "how" to best store and access data How do I make my **data system** run x times as fast? (sql,nosql,bigdata, ...)

How do I make my **data system** run x times as fast? (sql,nosql,bigdata, ...)

How do I minimize my bill in the cloud?

How do I make my **data system** run x times as fast? (sql,nosql,bigdata, ...)

How do I minimize my bill in the cloud?

How to accelerate **statistics** computation for data science/ML?

How do I make my data system run x times as fast?

- (sql,nosql,bigdata, ...)

How do I minimize my bill in the cloud?

How to accelerate **statistics** computation for data science/ML?

How do I train my neural network/LLM x times faster?

How do I make my data system run x times as fast?

- (sql,nosql,bigdata, ...)

How do I minimize my bill in the cloud?

How to accelerate **statistics** computation for data science/ML?

How do I train my neural network/LLM x times faster?

How can I do 10x Image Al inference?

Is there maybe a perfect system? Nope...

learning outcome Fundamentals of storage

data structures, SQL, NoSQL, Neural Networks, Data Science, Images, LLMs

learning outcome Fundamentals of storage

data structures, SQL, NoSQL, Neural Networks, Data Science, Images, LLMs

Self-designing systems

Automated system design: cloud cost, hardware, data & app requirements

first 4-5 weeks: Stratos/Sanket/Utku

Basic background
Self-designing systems
Neural network systems
Image AI systems
Research thinking

afterwards:

Students present research papers
One paper per class (ML systems)
In-class research/systems discussion
Research reviews
Research/systems projects

Recent Research Papers

DASIAN AND SEAS

Each student:

2 reviews per week/1 presentation

review and slides should focus on

what is the problem
why is it important
why is it hard
why existing solutions do not work
what is the core intuition for the solution
solution step by step
does the paper prove its claims
exact setup of analysis/experiments
are there any gaps in the logic/proof
possible next steps

* follow a few citations to gain more background

learn to judge constructively

learn to present

learn to prepare slides

Each student:

2 reviews per week/1 presentation

review and slides should focus on

what is the problem
why is it important
why is it hard
why existing solutions do not work
what is the core intuition for the solution
solution step by step
does the paper prove its claims
exact setup of analysis/experiments
are there any gaps in the logic/proof
possible next steps

* follow a few citations to gain more background

systems project

research project

systems project

individual project NoSQL, in c/c++
MLsys, in pytorch

research project

systems project

individual project NoSQL, in c/c++
MLsys, in pytorch

research project

groups of max three

Adaptivity/Performance Across all subject areas

systems project

individual project NoSQL, in c/c++
MLsys, in pytorch

research project

groups of max three

Adaptivity/Performance Across all subject areas

Questions on logistics?

Self-designing Systems

The problem: as the big data/Al world keeps changing...

The problem: as the big data/Al world keeps changing...

there is a continuous need for new data systems but it is extremely hard to design & build new systems

How do we design a data system that is X times faster for a workload W?

How do we design a data system that is X times faster for a workload W?

How do we design a data system that allows for control of cloud cost?

How do we design a data system that is X times faster for a workload W?

How do we design a data system that allows for control of cloud cost?

What happens if we introduce new application feature Y?

Should we **upgrade** to new version Z?

What happens if we introduce new application feature Y?

Should we **upgrade** to new version Z?

What will **break** our system?

huge cloud cost

environmental impact

huge cloud cost

expensive transitions

environmental impact

huge cloud cost

expensive transitions

application feasibility

environmental impact

BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS

huge cloud cost

expensive transitions application feasibility

environmental impact

complexity

how we **BUILD** systems

design is an art

design is an art

Design: 6-7 years **6**Reasoning: months/impossible

GET N EXPERT DESIGNERS

GIVE THEM TTIME

HOPE FOR THE BEST

design is an art

Re

sign:

mpossible

is an art

1 design/research skills do not scale

2 no one knows everything out there

NoSQL storage

P. O'Neil, E. Cheng, D. Gawlick, E, O'Neil The log-structured merge-tree (LSM-tree) Acta Informatica 33 (4): 351–385, 1996

2 no one knows everything out there

NoSQL storage

P. O'Neil, E. Cheng, D. Gawlick, E, O'Neil The log-structured merge-tree (LSM-tree) Acta Informatica 33 (4): 351–385, 1996

THE HIPPO METHOD "HIGHEST PAID PERSON'S OPINION"

standard "solution" (17) expose knobs

1. Aren't data systems already "adaptive", e.g., optimizer makes the best online decision?

1. Aren't data systems already "adaptive", e.g., optimizer makes the best online decision? Yes, but only around a narrow design space.

- Aren't data systems already "adaptive", e.g., optimizer makes the best online decision?
 Yes, but only around a narrow design space.
- 2. Aren't adaptive data systems architectures able to adapt to new applications?

- Aren't data systems already "adaptive", e.g., optimizer makes the best online decision?
 Yes, but only around a narrow design space.
- 2. Aren't adaptive data systems architectures able to adapt to new applications? Yes, better than #1 (e.g., query adaptivity), but still only around a narrow design space.

- Aren't data systems already "adaptive", e.g., optimizer makes the best online decision?
 Yes, but only around a narrow design space.
- 2. Aren't adaptive data systems architectures able to adapt to new applications? Yes, better than #1 (e.g., query adaptivity), but still only around a narrow design space.
- 3. Aren't learned system components able to adapt even more?

- Aren't data systems already "adaptive", e.g., optimizer makes the best online decision?
 Yes, but only around a narrow design space.
- 2. Aren't adaptive data systems architectures able to adapt to new applications? Yes, better than #1 (e.g., query adaptivity), but still only around a narrow design space.
- 3. Aren't learned system components able to adapt even more?
 Yes, better than #2 (e.g., data adaptivity), but still only around a narrow design space.

- Aren't data systems already "adaptive", e.g., optimizer makes the best online decision?
 Yes, but only around a narrow design space.
- 2. Aren't adaptive data systems architectures able to adapt to new applications? Yes, better than #1 (e.g., query adaptivity), but still only around a narrow design space.
- 3. Aren't learned system components able to adapt even more?
 Yes, better than #2 (e.g., data adaptivity), but still only around a narrow design space.
- 4. Can't we just throw ML into the problem? ChatGPT?

- Aren't data systems already "adaptive", e.g., optimizer makes the best online decision?
 Yes, but only around a narrow design space.
- 2. Aren't adaptive data systems architectures able to adapt to new applications? Yes, better than #1 (e.g., query adaptivity), but still only around a narrow design space.
- 3. Aren't learned system components able to adapt even more?
 Yes, better than #2 (e.g., data adaptivity), but still only around a narrow design space.
- 4. Can't we just throw ML into the problem? ChatGPT?

 Yes, but the programming design space is massive. A correct design is not a desired one.

- 1. Aren't data systems already "adaptive", e.g., optimizer makes the best online decision? Yes, but only around a narrow design space.
- 2. Aren't adaptive data systems architectures able to adapt to new applications? Yes, better than #1 (e.g., query adaptivity), but still only around a narrow design space.
- 3. Aren't learned system components able to adapt even more?
 Yes, better than #2 (e.g., data adaptivity), but still only around a narrow design space.
- 4. Can't we just throw ML into the problem? ChatGPT?
 Yes, but the programming design space is massive. A correct design is not a desired one.

These ideas can lead to better systems but we need something more to

FIND FAST THE BEST POSSIBLE DESIGN

SELF-DESIGNING SYSTEMS

Automatically invent & build the perfect system for any new application

HOW—DO WESTART—

data structure decisions define the algorithms that access data

υ^{ηΟ}rdered [7,4,2,6,1,3,9,10,5,8]

ordered [1,2,3,4,5,6,7,8,9,10]

ALGORITHMS

DATA SYSTEMS ALGORITHMS

LSM-tree KV-stores

LSM-tree KV-stores

LSM-tree KV-stores

LSM-tree KV-stores

LSM-tree KV-stores

LSM-tree KV-stores

LSM-tree KV-stores

LSM-tree KV-stores

LSM-tree KV-stores

LSM-tree KV-stores

LSM-tree KV-stores

LSM-tree KV-stores FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN MACHINE LEARNING, SQL, CRYPTO, SCIENCE

Constant and increasing efforts for new system designs as applications & hardware change

diverse data structures

interactions

hardware

parallelism

robustness cloud cost SLAs

diverse data structures

interactions

hardware

parallelism

robustness cloud cost SLAs

Requirements/Goals

diverse data structures

interactions

hardware

parallelism

robustness cloud cost SLAs

Requirements/Goals

Context

diverse data structures

interactions

hardware

parallelism

robustness cloud cost SLAs

Requirements/Goals

Context

diverse data structures

interactions

hardware

parallelism

robustness cloud cost SLAs

Requirements/Goals

Context

AUTO DESIGN

Rob Tarjan, Turing Award 1986

"IS THERE A CALCULUS OF DATA STRUCTURES

by which one can choose the appropriate representation and techniques for a given problem?" (SIAM, 1978)

[Pvs NP, average case, constant factors vs asymptotic, low bounds]

STHERE A CALCULUS OF DATA SYSTEMS?

"IS THERE A CALCULUS OF DATA STRUCTURES
by which one can choose the appropriate representation
and techniques for a given problem?" (SIAM,1978)

[Pvs NP, average case, constant factors vs asymptotic, low bounds]


```
action is for nothing holy hope the most form fear free ultimate I theory
```


action is
the most holy
form
of
ultimate theory

I hope for nothing
I fear nothing
I am free

action is
the most holy
of
form
theultimate theory

I hope for nothing
I fear nothing
I am free

the grammar of data systems design

action is
the most holy
of
form
theultimate theory

the grammar of data systems design

action is
the most holy
of
form
theultimate theory

the grammar of data systems design

action is
the most holy
of
form
theultimate theory

Nikos Kazantzakis, philosopher

the grammar of data systems design

action is
the most holy
of
form
theather
ultimate theory

grammar/ sentences

words

alphabet

interactions

data structures

principles

Nikos Kazantzakis, philosopher

the grammar of data systems design

action is
the most holy
of
form

ultimate theory

grammar/ sentences

words

alphabet

interactions

data structures

principles

Nikos Kazantzakis, philosopher

the grammar of data systems design

action is
the most holy
of
form
theultimate theory

grammar/ sentences

words

alphabet

interactions
data structures
principles

Nikos Kazantzakis, philosopher

the grammar of data systems design

action is the

most holy of form theory

which are "all" possible *data systems* we may ever invent?

Data Calculator @SIGMOD 2018

Data Calculator @SIGMOD 2018

New NoSQL systems: 1000x faster

Cosine @PVLDB 2022 and Limousine @SIGMOD 2024

Data Calculator @SIGMOD 2018

New NoSQL systems: 1000x faster

Cosine @PVLDB 2022 and Limousine @SIGMOD 2024

Synthesized statistics, 10x faster ML

Data Canopy @SIGMOD 2017

Data Calculator @SIGMOD 2018

New NoSQL systems: 1000x faster

Cosine @PVLDB 2022 and Limousine @SIGMOD 2024

Synthesized statistics, 10x faster ML

Data Canopy @SIGMOD 2017

10x faster Neural Networks

MotherNets @MLSys 2020, and M2 @MLSys 2023

Data Calculator @SIGMOD 2018

New NoSQL systems: 1000x faster

Cosine @PVLDB 2022 and Limousine @SIGMOD 2024

Synthesized statistics, 10x faster ML

Data Canopy @SIGMOD 2017

10x faster Neural Networks

MotherNets @MLSys 2020, and M2 @MLSys 2023

10x faster Image Al

Image Calculator, SIGMOD 2024

Get familiar with the very basics of traditional database architectures:

Architecture of a Database System. By J. Hellerstein, M. Stonebraker and J. Hamilton. Foundations and Trends in Databases, 2007

Get familiar with very basics of modern database architectures:

The Design and Implementation of Modern Column-store Database Systems. By D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, S. Madden. Foundations and Trends in Databases, 2013

Get familiar with the very basics of modern large scale systems:

Massively Parallel Databases and MapReduce Systems. By Shivnath Babu and Herodotos Herodotou. Foundations and Trends in Databases, 2013

Check out: syllabus, preparation readings, project 0, systems project 1, online sections

http://daslab.seas.harvard.edu/classes/cs265/

Here is my data and inference requests. Design and implement and implement an LLM for my budget?

Nvidia released a new GPU.

Should we invest in the new hardware for our cluster of Image AI systems?

We are preparing to release a new feature for our social network application. Should we redesign and reimplement our underlying key-value store?

. . .

Stratos Idreos BIG DATA SYSTEMS

NoSQL | Neural Networks | Image AI | LLMs | Data Science