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Equation 13 is the combination of five logical parts: tree traver-
sal, leaves traversal, data retrieval, result writing, and result sort-
ing. When compared with Equation 10, the concurrent index access
may traverse the tree multiple times (one for each query). Finally,
the amount of work to write and sort the result depends on the sum
of the selectivity of each query.

2.4 Evaluating Access Path Selection
We now discuss access path selection. Using the model devel-

oped in the previous sections we construct a ratio of the two costs
using Equations 5 and 13. We call this ratio APS (Access Path Se-
lection) and it is defined as APS = ConcIndex

SharedScan . The optimizer in a
modern analytical system can use this model to determine which
access path to deploy (more in §3). When APS � 1 a scan should
be used; when APS < 1 a secondary index access is beneficial.

In the rest of this section we present an analysis that provides
intuition and observations about access path selection choices and
cases, demonstrating evidence that it is indeed useful to support al-
ternative access paths in modern analytical systems and how these
choices are different compared to traditional systems and optimiz-
ers. The analysis in this section is based on modeling. In Sec-
tion §4, we present a detailed experimental analysis that corrobo-
rates the results and provides further insights.
When Should We Switch Access Paths? To ease the presentation
of the APS ratio, we use the four quantities defined in Equations 1,
3, 6, 7, 8, and 14, for both the SharedScan and the SharedIndex
costs: the cost to traverse the tree (T T ), the cost to traverse the
leaves (T L), the cost to traverse the data (T DS, T DR, and T DI),
and the sorting factor (SF). The costs related to the tree, T T and
T L, depend on the relation size, the index design and the hardware
characteristics. The costs to traverse the data depend on the data
size and the sustainable read bandwidth. Finally, the sorting factor
SF is incurred by sorting the index output before passing it on to
the next operator in order to build a direct competitor of the scan
operator. Using Equations 5 and 13 the access path selection ratio
is defined as follows:

APS =
q ·T T +Stot (T L+T DI +T DR)+SF ·CA

max(T DS,q ·PE)+Stot ·T DR
(15)

In fact, APS is a multivariate function, that depends on all param-
eters presented in Table 1. For each instance of a system, though,
the hardware and the physical layout decisions are already made.
In addition, at runtime the data set size is also known, so runtime
access path selection is effectively a function of the level of query
concurrency q and the total selectivity Stot : APS (q,Stot).

Following the derivation presented in Appendix B the APS ratio
can be rewritten as follows:
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Understanding the APS Fraction. Equation 16 is comprised from
two different parts. The first one takes into account query concur-
rency q, the data set size N, the index branching factor b, and the
hardware trade-offs: bandwidth vs. LLC miss, and bandwidth vs.
L1 latency. The second part is mainly affected by the predicate
evaluation cost, the total selectivity Stot , and the data layout.

Let us now examine step by step the two parts of the numerator
and the denominator. The first part of the numerator is affected
by the level of concurrency, however, it has a rather small impact
for low q because of the term dlogb(N)e

N . This means that for low
concurrency, the cost of traversing the index is very small. The
cost increases only slightly as concurrency increases. The products
BWS ·CM and b ·BWS ·CA depend on hardware characteristics and
can be explained as follows: The first is the number of bytes that
can be read sequentially from the memory bus in the delay caused
by an LLC miss and the second is the number of bytes that can be
read sequentially from the memory bus in the same duration as b
L1 accesses. Typically, the latter, is about one order of magnitude
smaller than the first. Similarly, the term b ·BWS · fp · p corresponds
to the number of bytes that can be read sequentially during the time
needed to perform the b comparisons when searching which pointer
to follow. These three terms connect scan and index accesses from
the hardware point of view (see more details in Appendix B.1).

The second part of the numerator in Equation 16 is heavily im-
pacted by the total selectivity. The fraction BWS·CM

b gives how many
index nodes can be read sequentially at the time of an LLC miss,
while the remaining part depends largely on the layout of the index
and the result set (and on the relative performance when scanning
data, traversing the tree, and writing results). Lastly, the denomi-
nator is the only place that we see the tuple size ts. This, in turn,
means that having a larger tuple size (that is, having a row store,
or a column group storage) lowers the overall value of the ratio in-
dicating a more useful index. In addition to that, the denominator
includes the cost of predicate evaluation, which will make the scan
more expensive when it is larger than the data movement, which is
the case as concurrency q increases.

For small values of q the second part of the numerator dominates,
and as a result the dynamic parameter for the decision between
scan and index is the total selectivity Stot . On the other hand, as
the number of concurrent queries increases (which is an observed
workload trend [69]), the first part of the numerator and the pred-
icate evaluation part of the denominator in Equation 16 dominate,
hence increasing the significance of query concurrency. Another
way to view the access path selection model in Equation 16 is con-
sider what happens as the data set size increases. For larger N the
impact of q is smaller, however, the observed trends in workloads
and data sets is that both q and N would increase hence keeping
the concurrency as one of the decisive factors of the comparison
between shared scans and concurrent index accesses.
Model Verification. We verify the accuracy of the model using
experimental data from four machines. For each set of experiments,
we used a multidimensional unconstrained nonlinear minimization
technique (Nelder-Mead) to fit the model. More details about the
verification process are available in Appendix C.

2.5 Analysis of the APS Model
We now proceed with a detailed analysis that sheds light on addi-

tional aspects of access path selection and we summarize the find-
ings in a number of observations. We study several cases based on
the model for varying concurrency, selectivity, data size, tuple size,
and hardware characteristics.

The parameterization of the workload, dataset, hardware, and
secondary index tuning parameters, is based on our experimen-
tal setup (see §4). We parameterize the model to match our pri-
mary experimental server using CM = 180ns, CA = 2ns, BWS =
40GB/s, BWI = 20GB/s, and BWR = 20GB/s. We denote this hard-
ware as configuration HW1. We further model an alternate hard-
ware configuration, HW2, with CM = 100ns, and bandwidth BWS =
160GB/s, BWI = 80GB/s, and BWR = 80GB/s. We study the impact
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