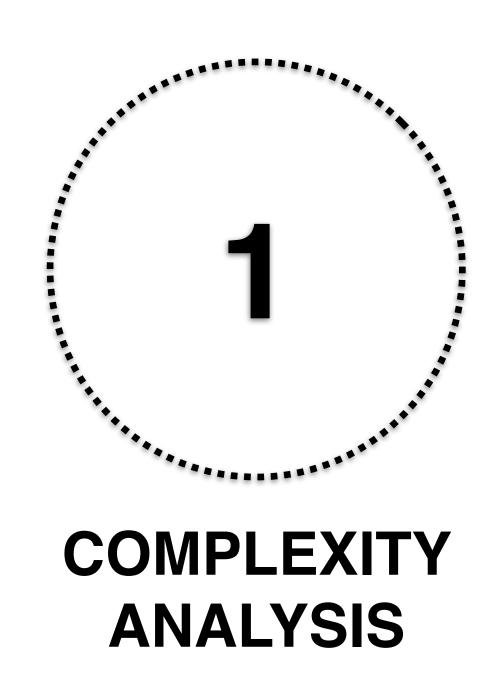
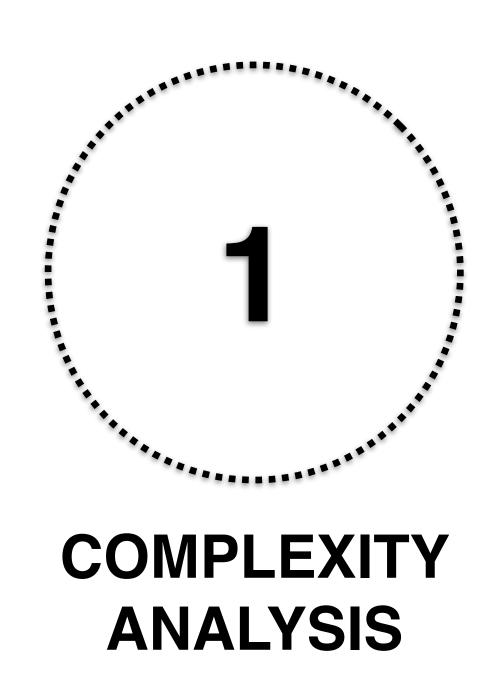
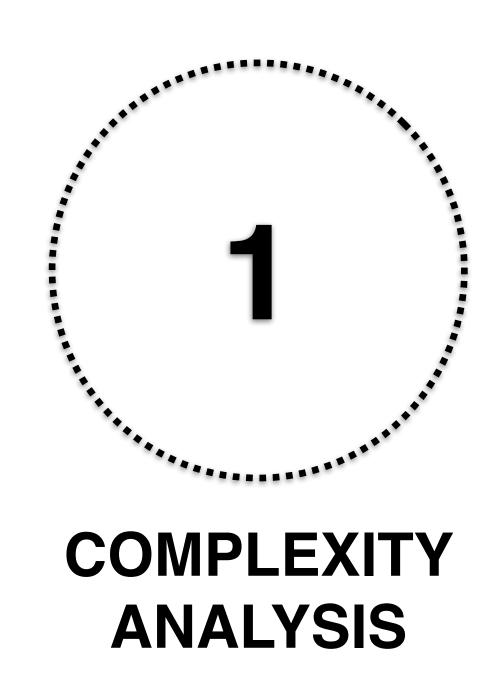
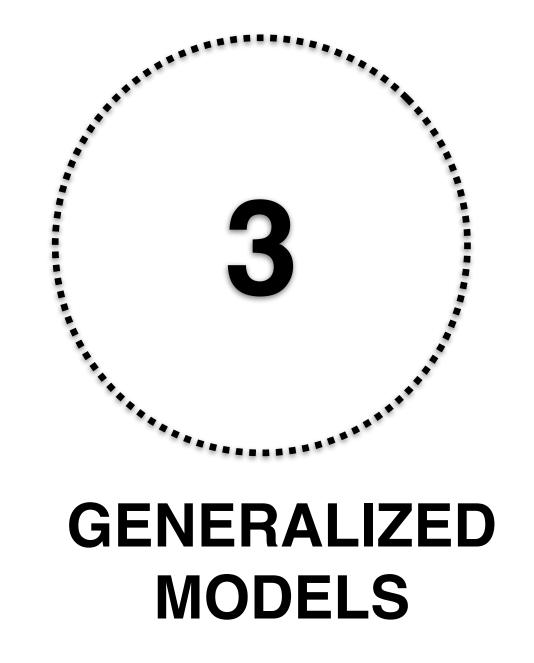
Stratos Idreos BIG DATA SYSTEMS

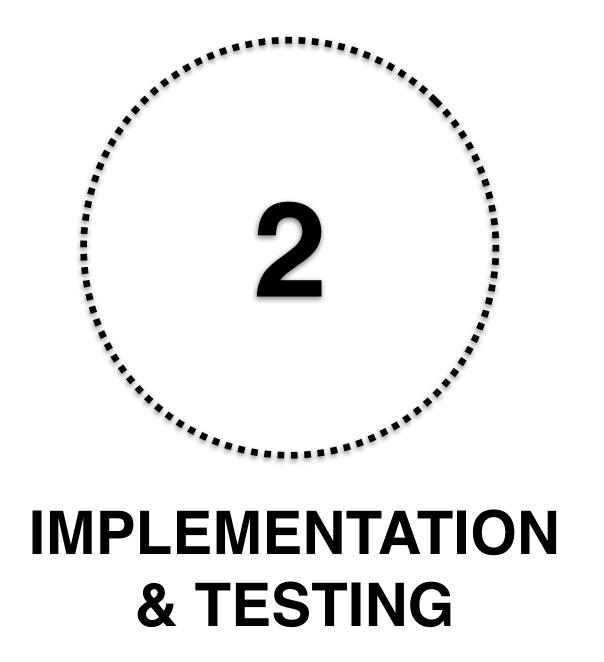
NoSQL | Neural Networks | Image AI | LLMs | Data Science

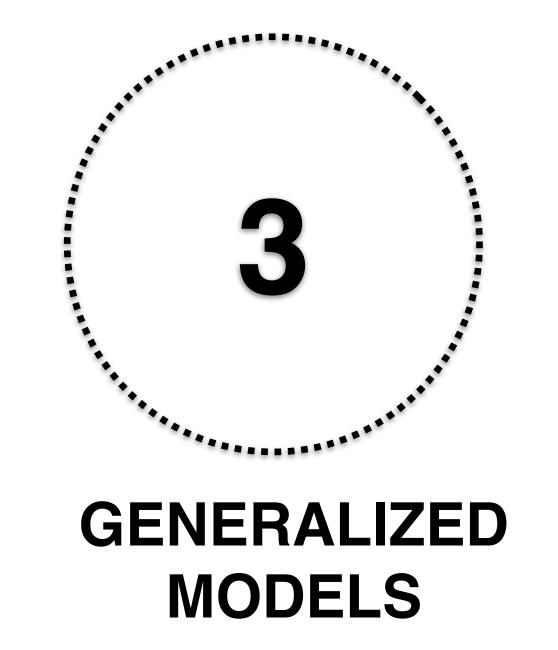






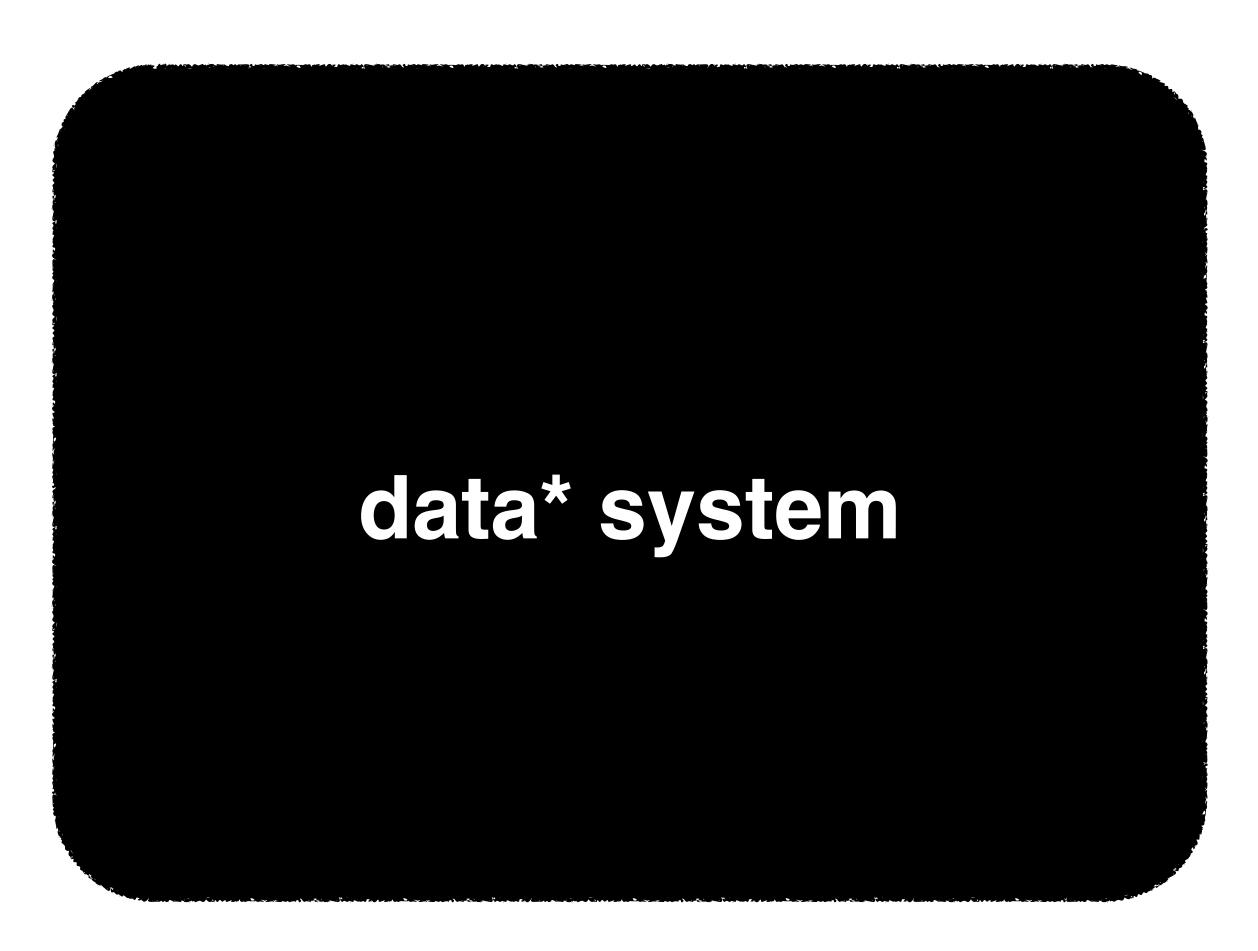




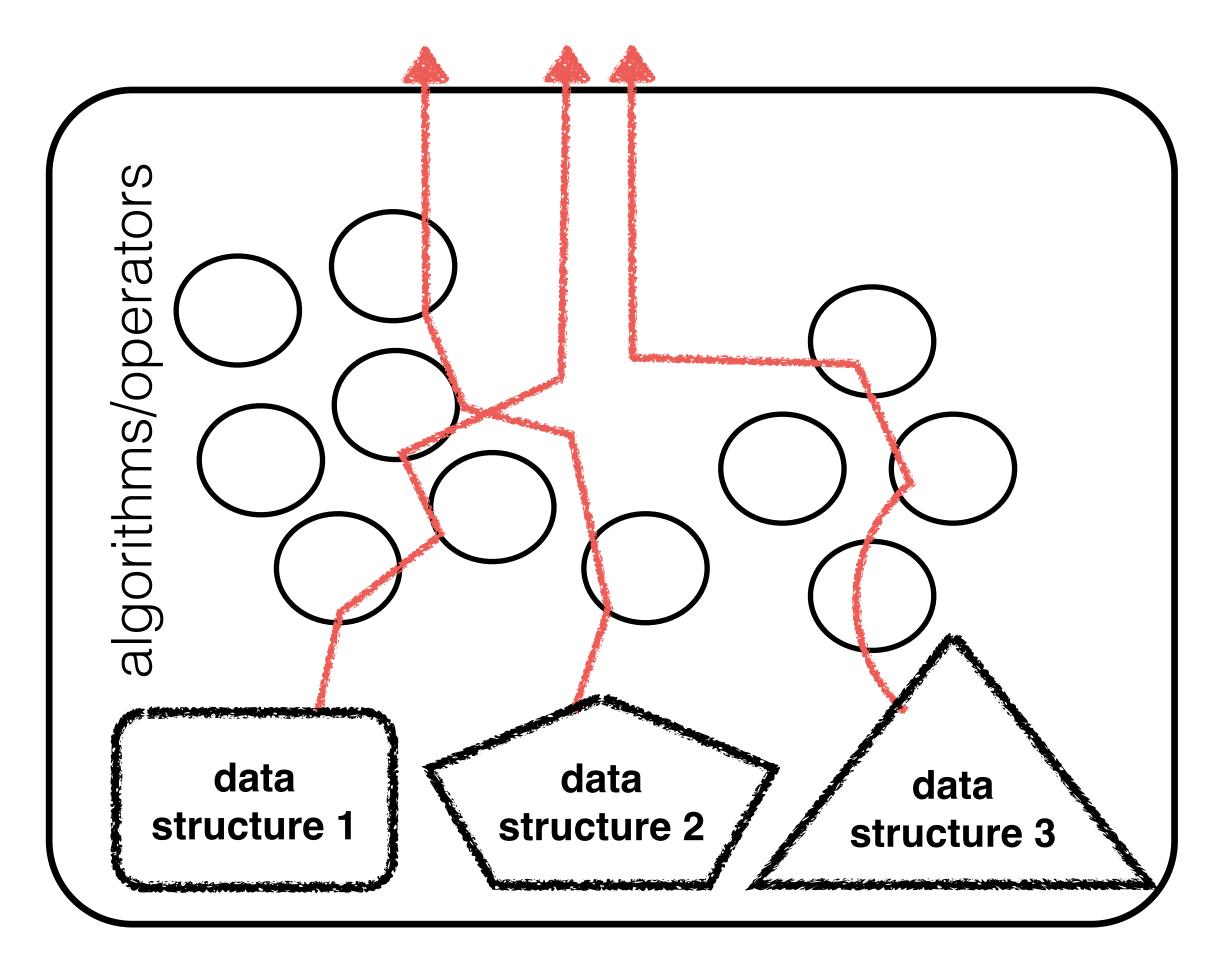


This sounds ideal: is it possible?

scan vs secondary index selection

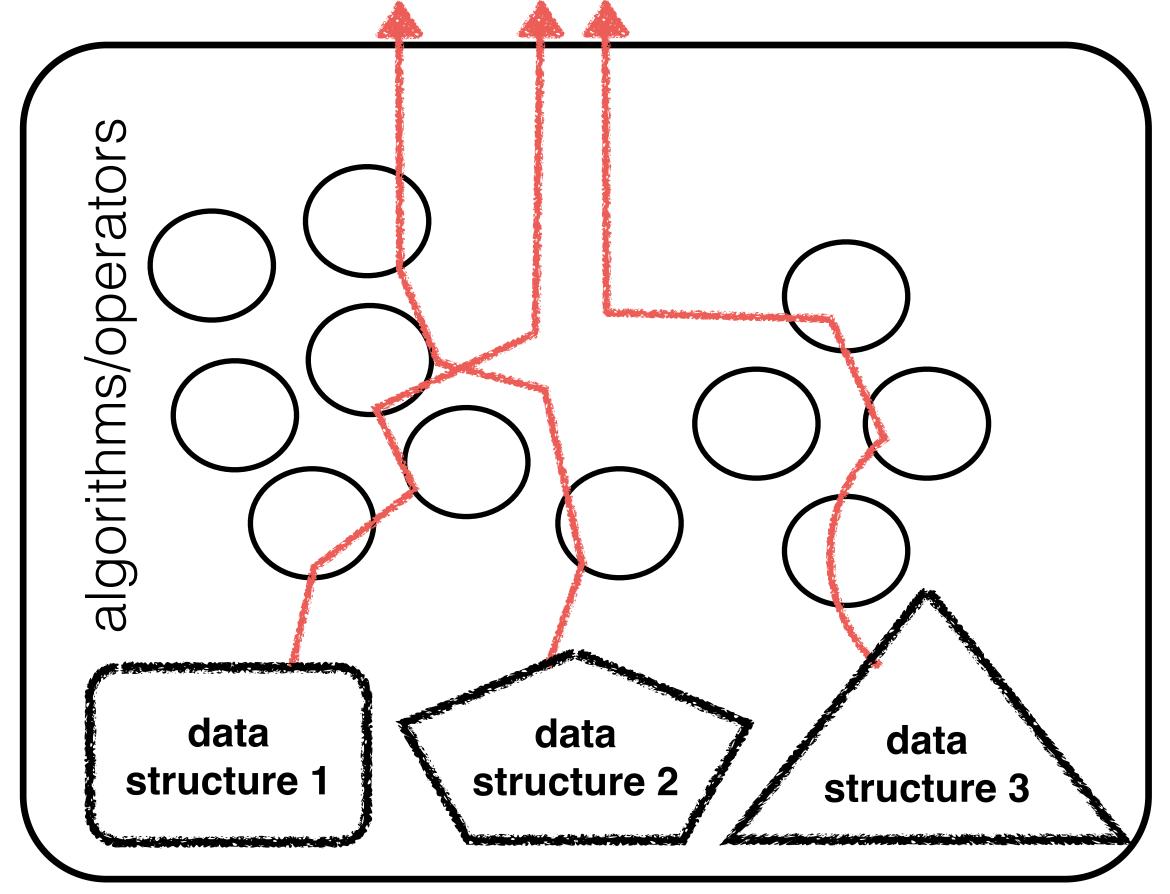


scan vs secondary index selection



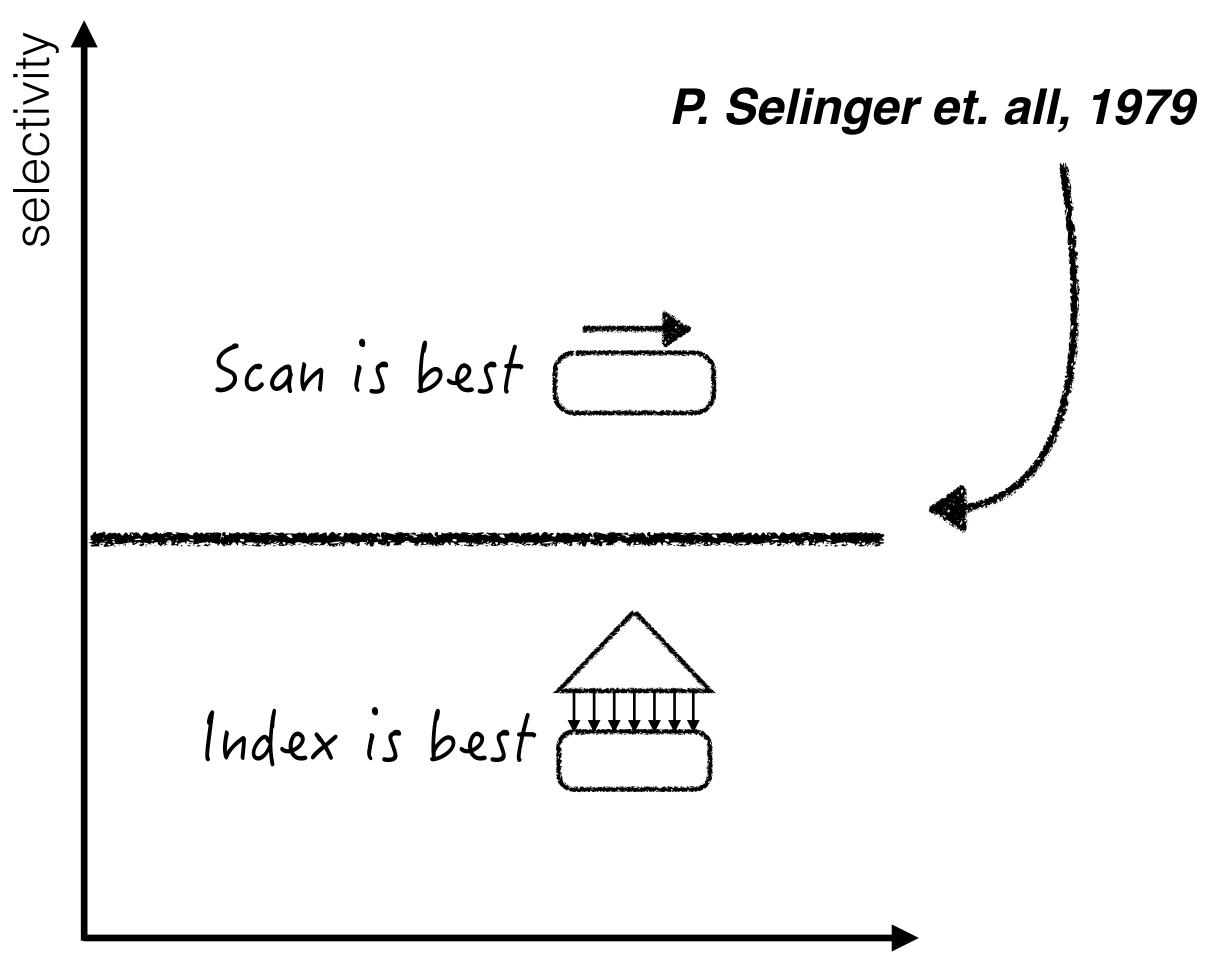
ACCESS PATH SELECTION

scan vs secondary index selection



ACCESS PATH SELECTION

scan vs secondary index selection



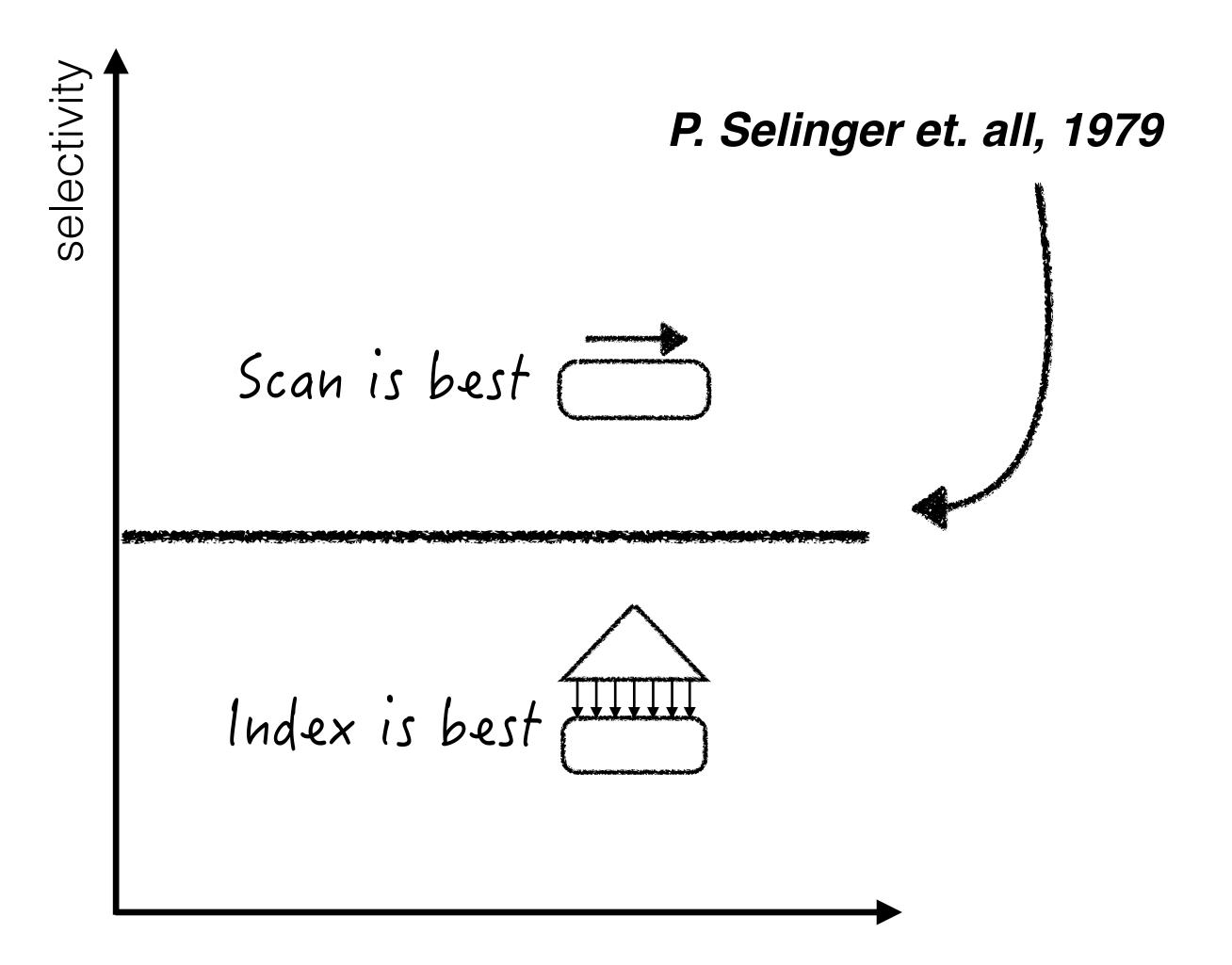
ACCESS PATH SELECTION

scan vs secondary index selection

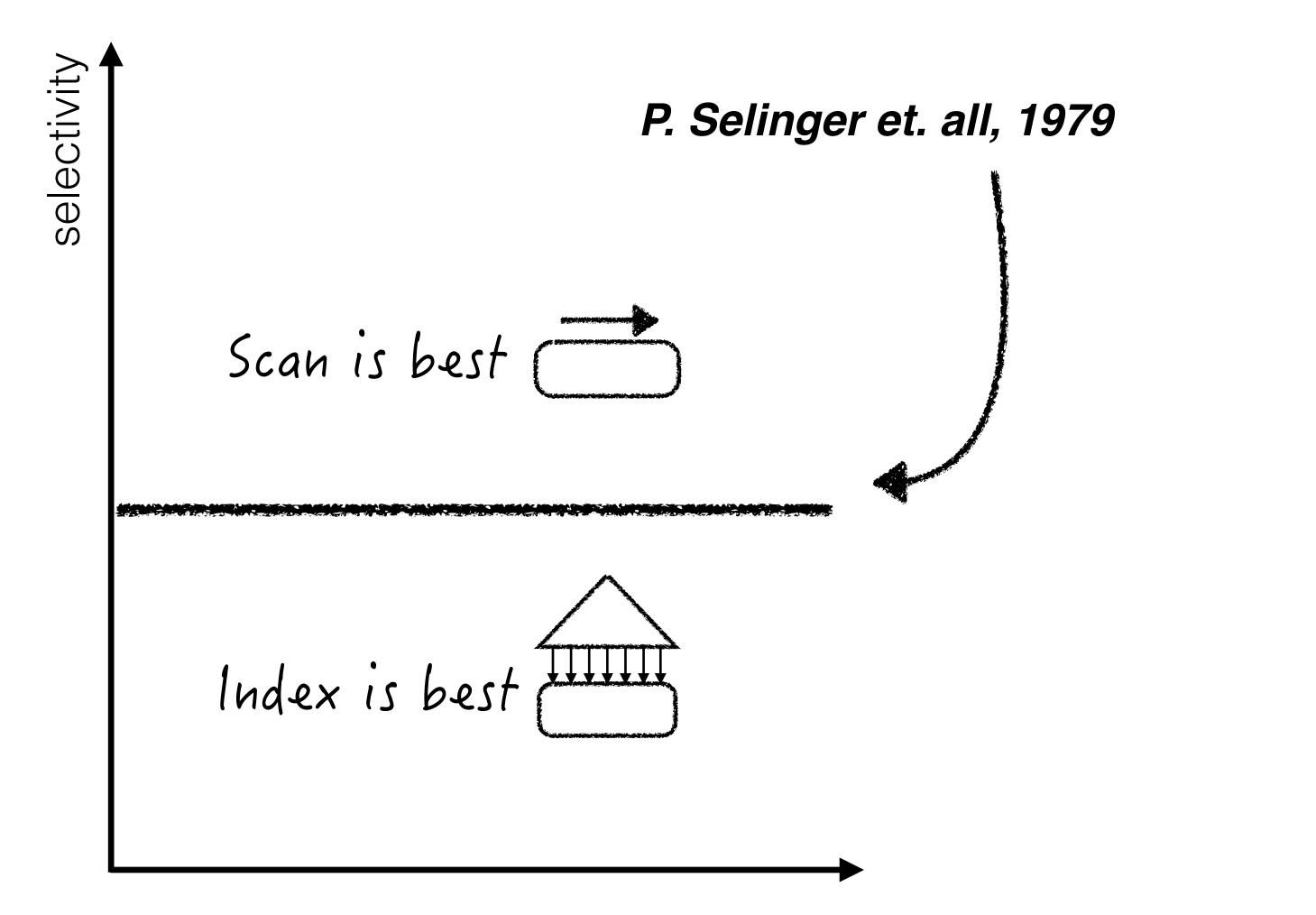
selectivity P. Selinger et. all, 1979 Scan is best Index is best

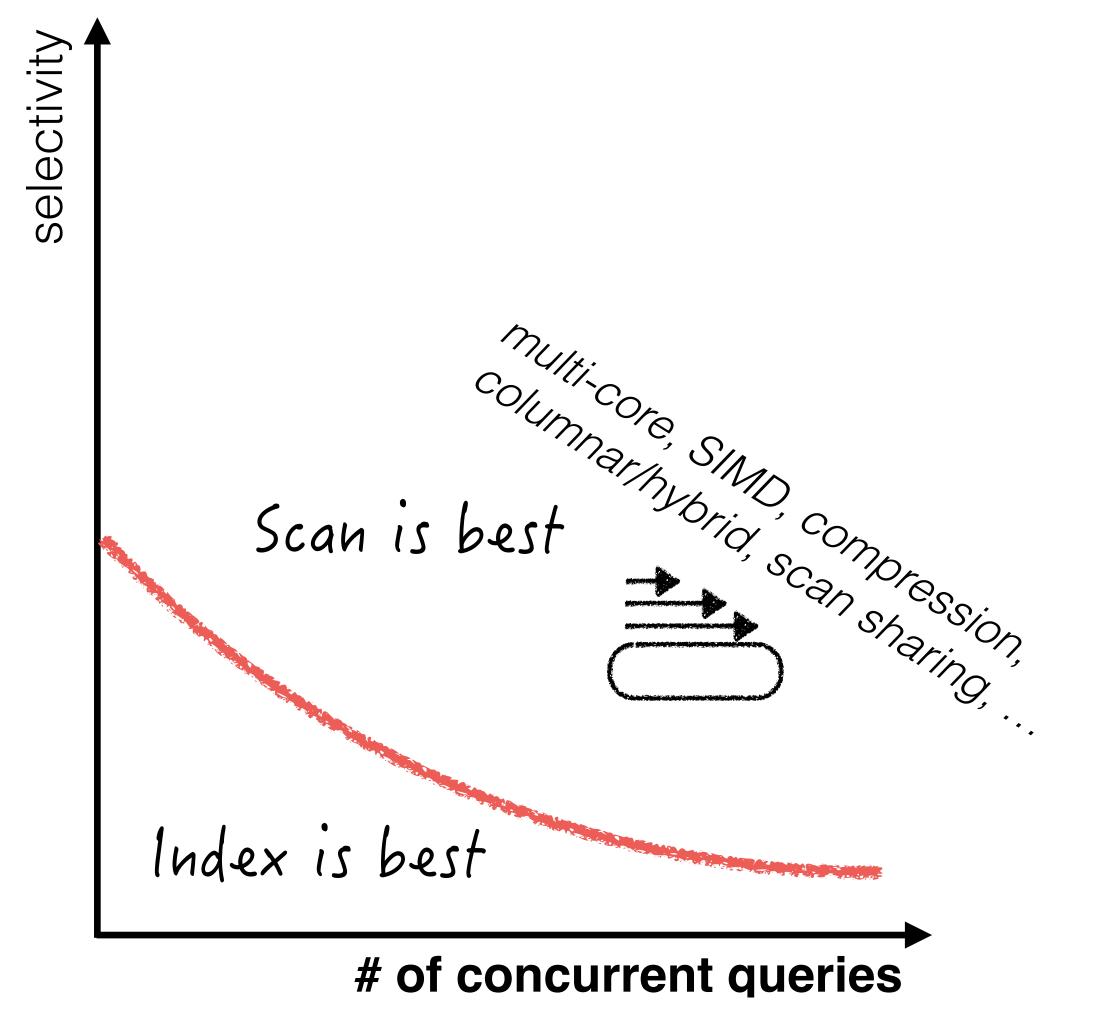
DO WE STILL NEED INDEXING? (AND IF YES HOW DO WE CHOOSE)

scan vs secondary index selection

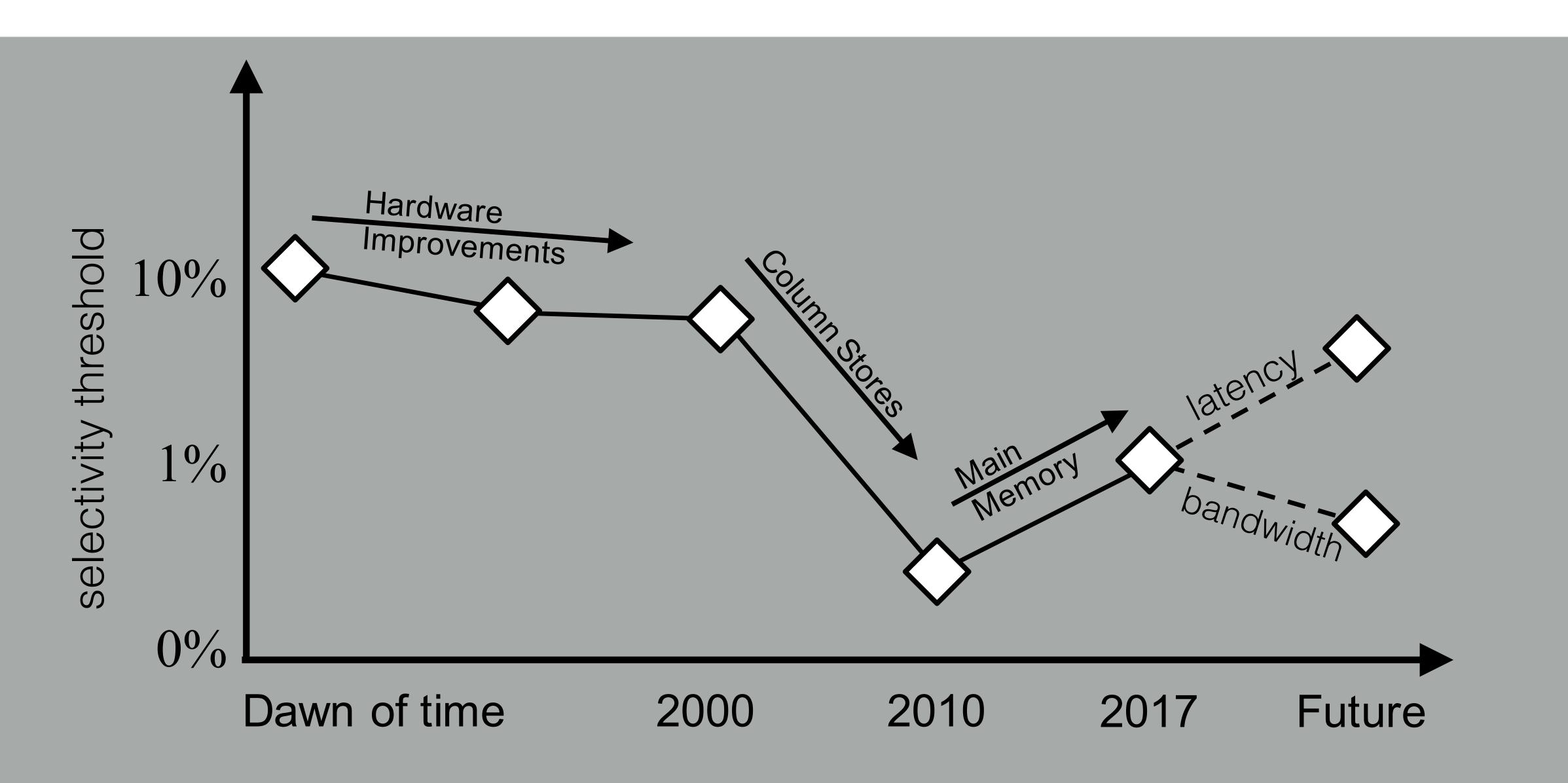


scan vs secondary index selection





scan vs secondary index selection

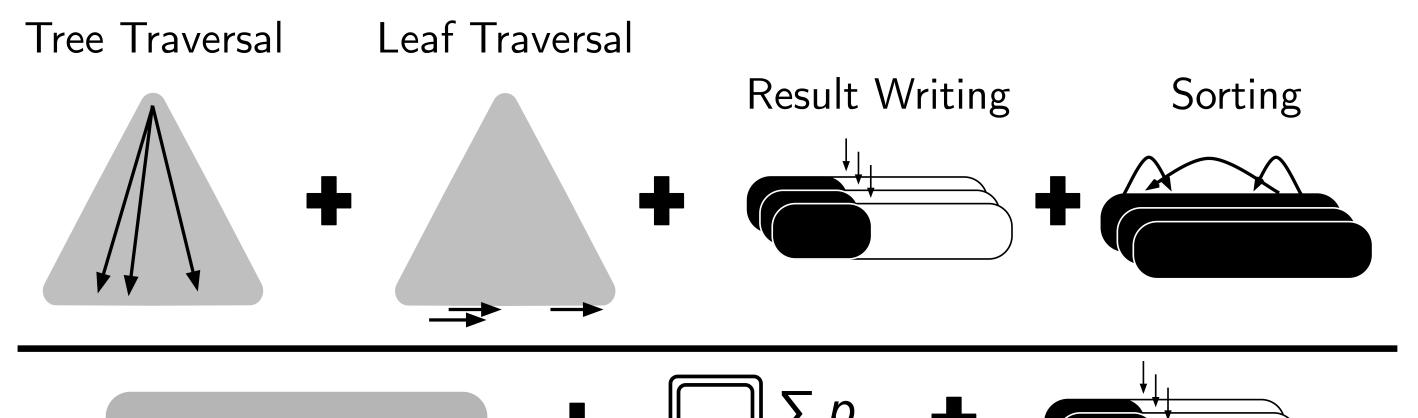


$$APS(q, S_{tot}) = \frac{q \cdot \frac{1 + \lceil log_b(N) \rceil}{N} \cdot \left(BW_S \cdot C_M + \frac{b \cdot BW_S \cdot C_A}{2} + \frac{b \cdot BW_S \cdot f_p \cdot p}{2}\right)}{max \left(ts, 2 \cdot f_p \cdot p \cdot q \cdot BW_S\right) + S_{tot} \cdot rw \cdot \frac{BW_S}{BW_R}}$$

$$+ \frac{S_{tot} \left(\frac{BW_S \cdot C_M}{b} + (aw + ow) \cdot \frac{BW_S}{BW_I} + rw \cdot \frac{BW_S}{BW_R}\right)}{max \left(ts, 2 \cdot f_p \cdot p \cdot q \cdot BW_S\right) + S_{tot} \cdot rw \cdot \frac{BW_S}{BW_R}}$$

$$+ \frac{S_{tot} \cdot log_2 \left(S_{tot} \cdot N\right) \cdot BW_S \cdot C_A}{max \left(ts, 2 \cdot f_p \cdot p \cdot q \cdot BW_S\right) + S_{tot} \cdot rw \cdot \frac{BW_S}{BW_R}}$$

scan vs secondary index selection @SIGMOD 2017



Predicate Eval.

Result Writing

Base Scan

Workload	q	number of queries
	s_i	selectivity of query i
	S_{tot}	total selectivity of the workload
Dataset	N	data size (tuples per column)
	ts	tuple size (bytes per tuple)
Hardware	C_A	L1 cache access (sec)
	C_M	LLC miss: memory access (sec)
	BW_S	scanning bandwidth (GB/s)
	BW_R	result writing bandwidth (GB/s)
	BW_I	leaf traversal bandwidth (GB/s)
	p	The inverse of CPU frequency
	f_p	Factor accounting for pipelining
Scan	rw	result width (bytes per output tuple)
&	b	tree fanout
Index	aw	attribute width (bytes of the indexed column)
	ow	offset width (bytes of the index column offset)

HAH) &

$$APS(q, S_{tot}) = \frac{q \cdot \frac{1 + \lceil log_b(N) \rceil}{N} \cdot \left(BW_S \cdot C_M + \frac{b \cdot BW_S \cdot C_A}{2} + \frac{b \cdot BW_S \cdot f_p \cdot p}{2}\right)}{max \left(ts, 2 \cdot f_p \cdot p \cdot q \cdot BW_S\right) + S_{tot} \cdot rw \cdot \frac{BW_S}{BW_R}}$$

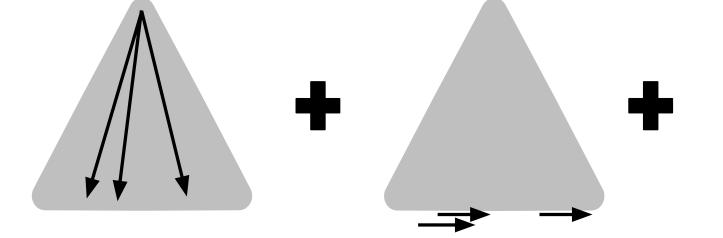
$$+ \frac{S_{tot} \left(\frac{BW_S \cdot C_M}{b} + (aw + ow) \cdot \frac{BW_S}{BW_I} + rw \cdot \frac{BW_S}{BW_R}\right)}{max \left(ts, 2 \cdot f_p \cdot p \cdot q \cdot BW_S\right) + S_{tot} \cdot rw \cdot \frac{BW_S}{BW_R}}$$

$$+ \frac{S_{tot} \cdot log_2 \left(S_{tot} \cdot N\right) \cdot BW_S \cdot C_A}{max \left(ts, 2 \cdot f_p \cdot p \cdot q \cdot BW_S\right) + S_{tot} \cdot rw \cdot \frac{BW_S}{BW_R}}$$

scan vs secondary index selection @SIGMOD 2017

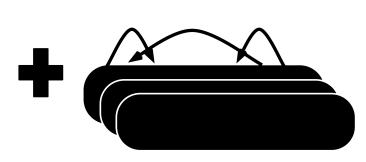
Tree Traversal

Leaf Traversal

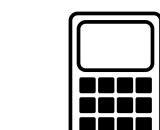


Result Writing

Sorting



Base Scan



Predicate Eval.

Result Writing

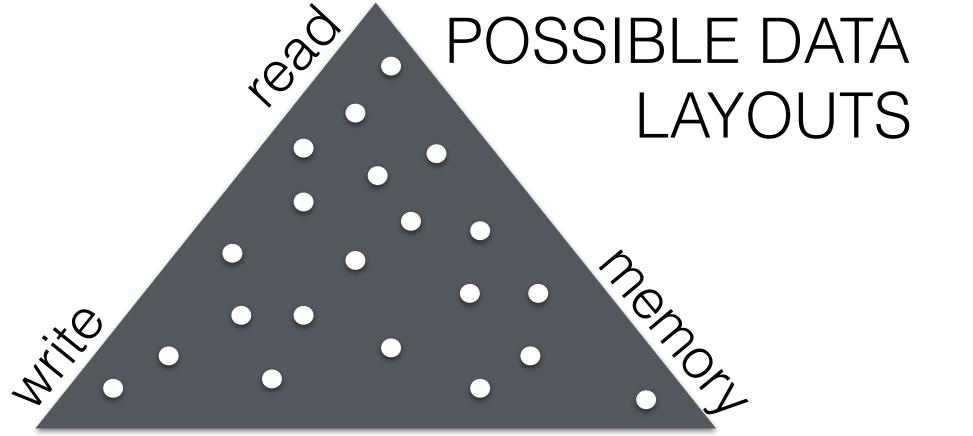
Workload	a	number of queries
WOIRIOUG	\boldsymbol{q}	^
	$S_{\dot{l}}$	selectivity of query i
	S_{tot}	total selectivity of the workload
Dataset	N	data size (tuples per column)
	ts	tuple size (bytes per tuple)
Hardware	C_A	L1 cache access (sec)
	C_M	LLC miss: memory access (sec)
	BW_S	scanning bandwidth (GB/s)
	BW_R	result writing bandwidth (GB/s)
	BW_I	leaf traversal bandwidth (GB/s)
	p	The inverse of CPU frequency
	f_p	Factor accounting for pipelining
Scan	rw	result width (bytes per output tuple)
&	b	tree fanout
Index	aw	attribute width (bytes of the indexed column)
	<i>ow</i>	offset width (bytes of the index column offset)

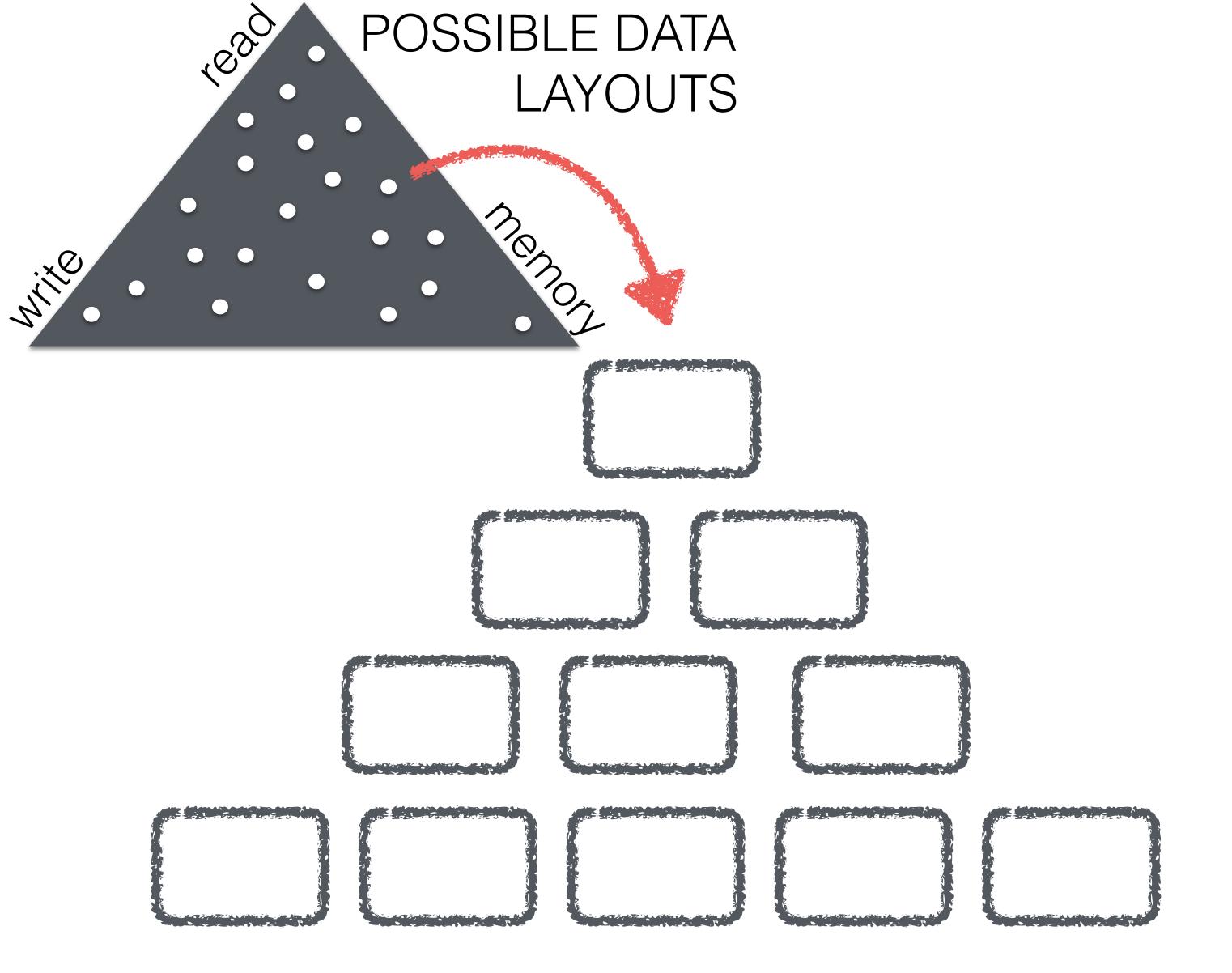
Access Path Selection in Main-Memory Optimized Data Systems: Should I Scan or Should I Probe? Michael Kester, Manos Athanassoulis, Stratos Idreos. In Proceedings of the ACM SIGMOD International Conference on Management of Data, 2017

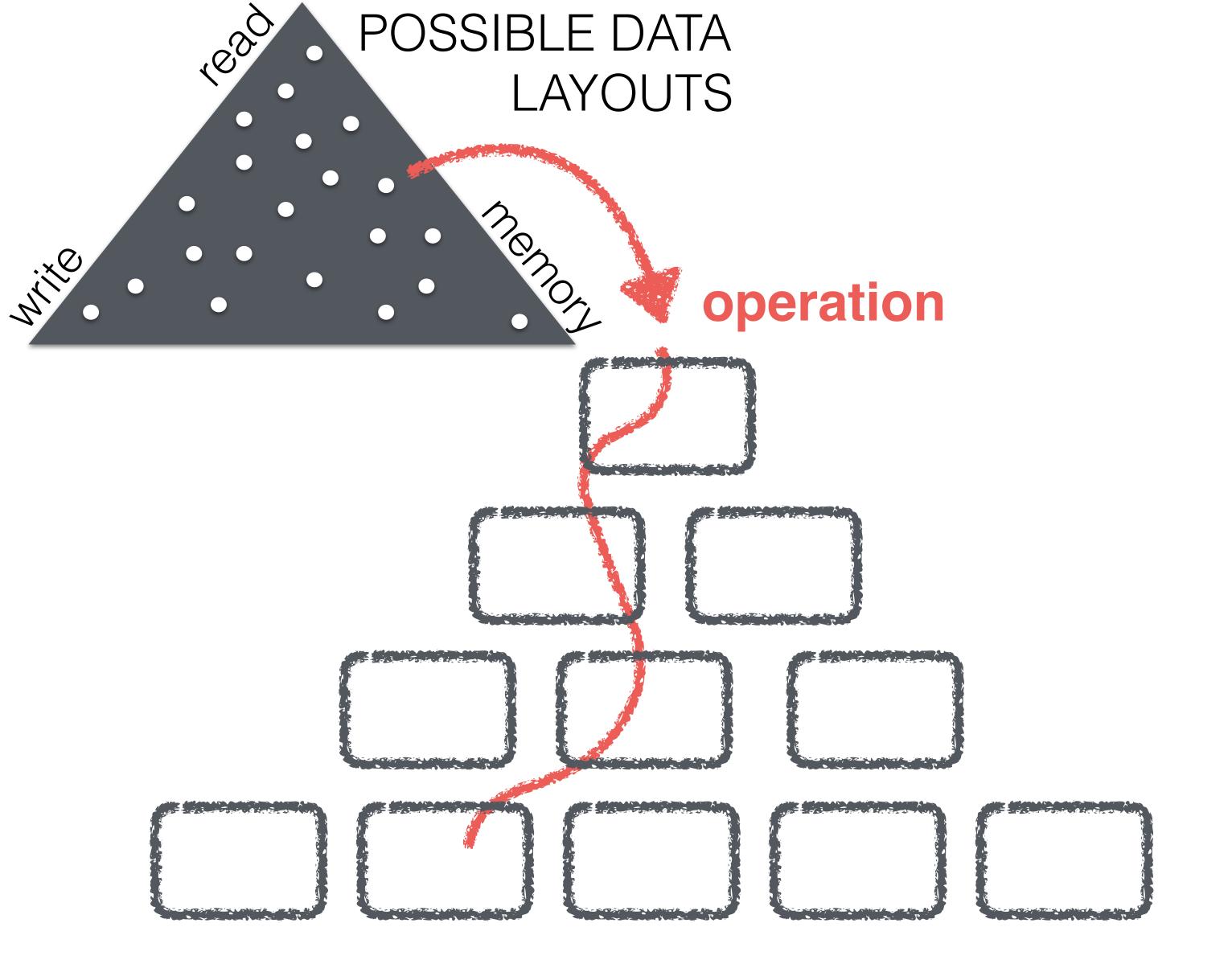
S. BING YAO models/advisors

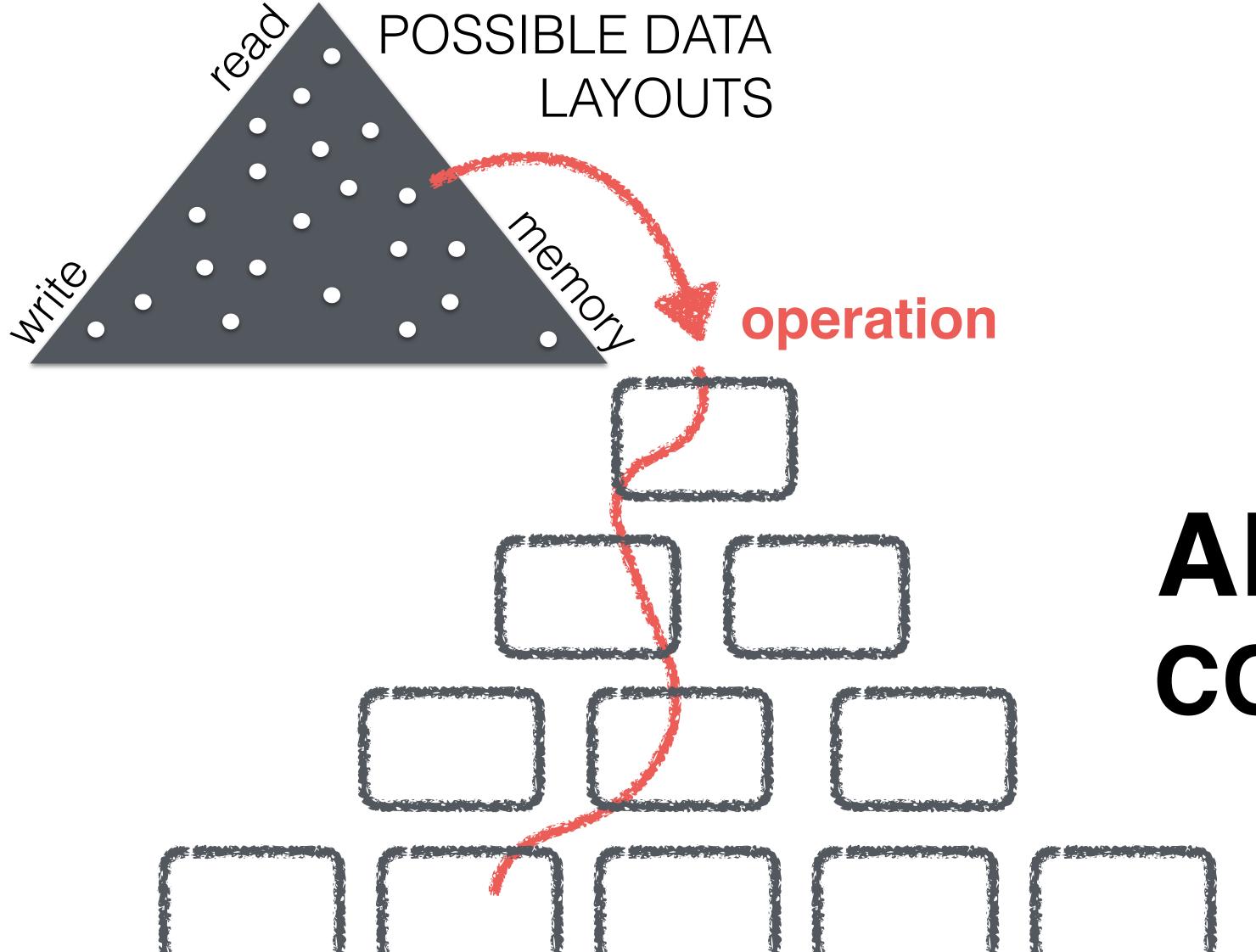
STEFAN MANEGOLD model synthesis



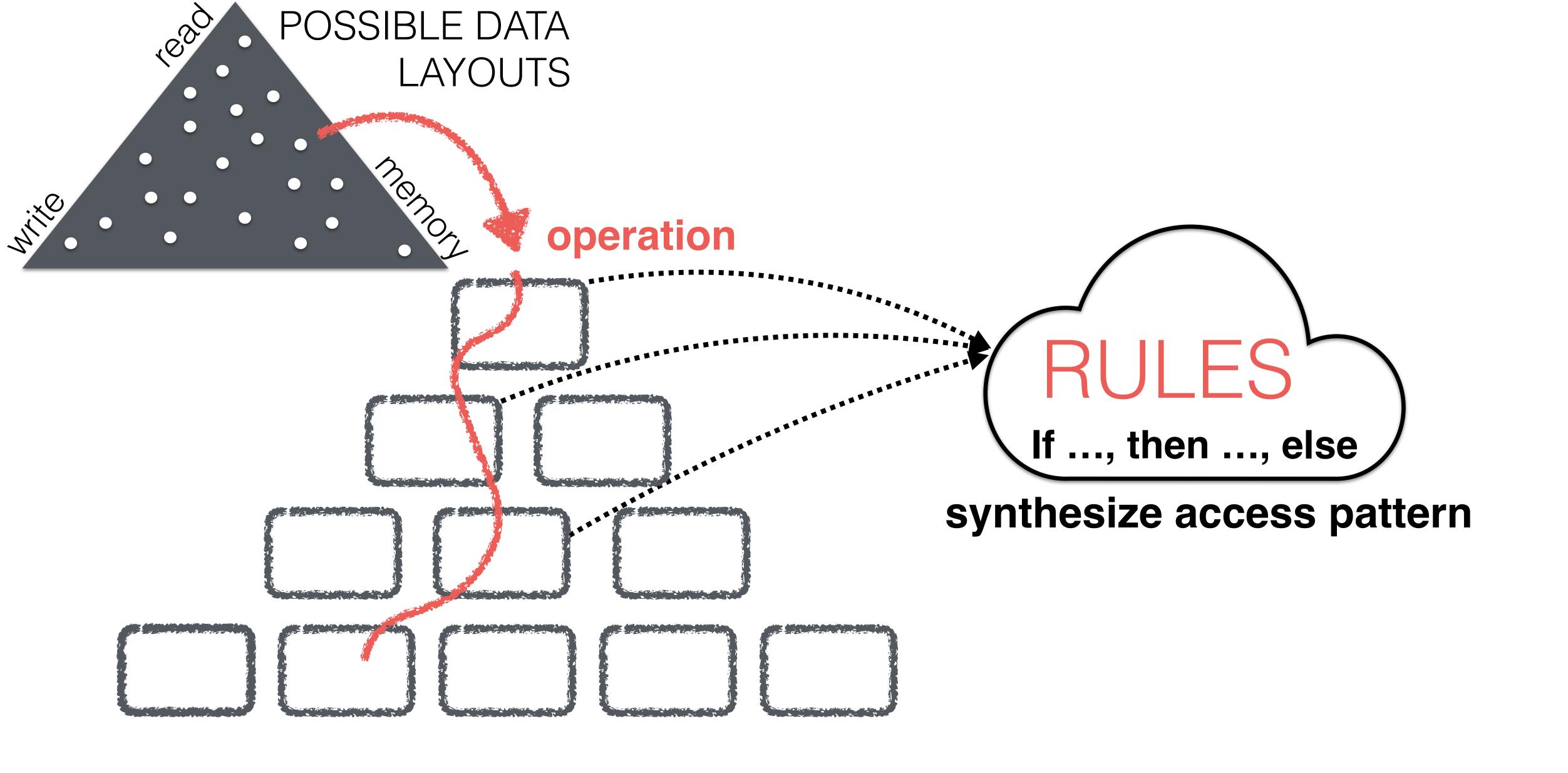






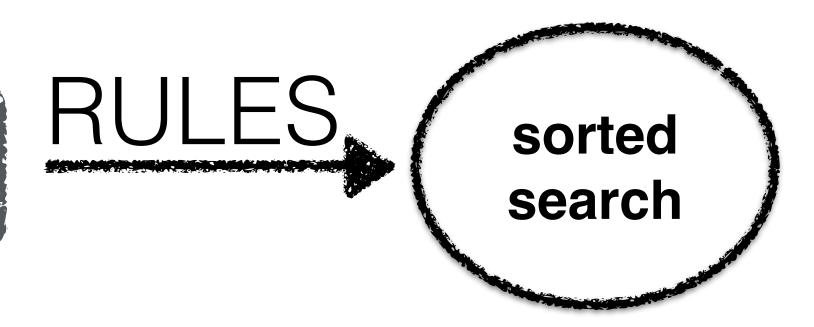


ALGORITHM & COST SYNTHESIS



sorted keys columnar layout

sorted keys columnar layout



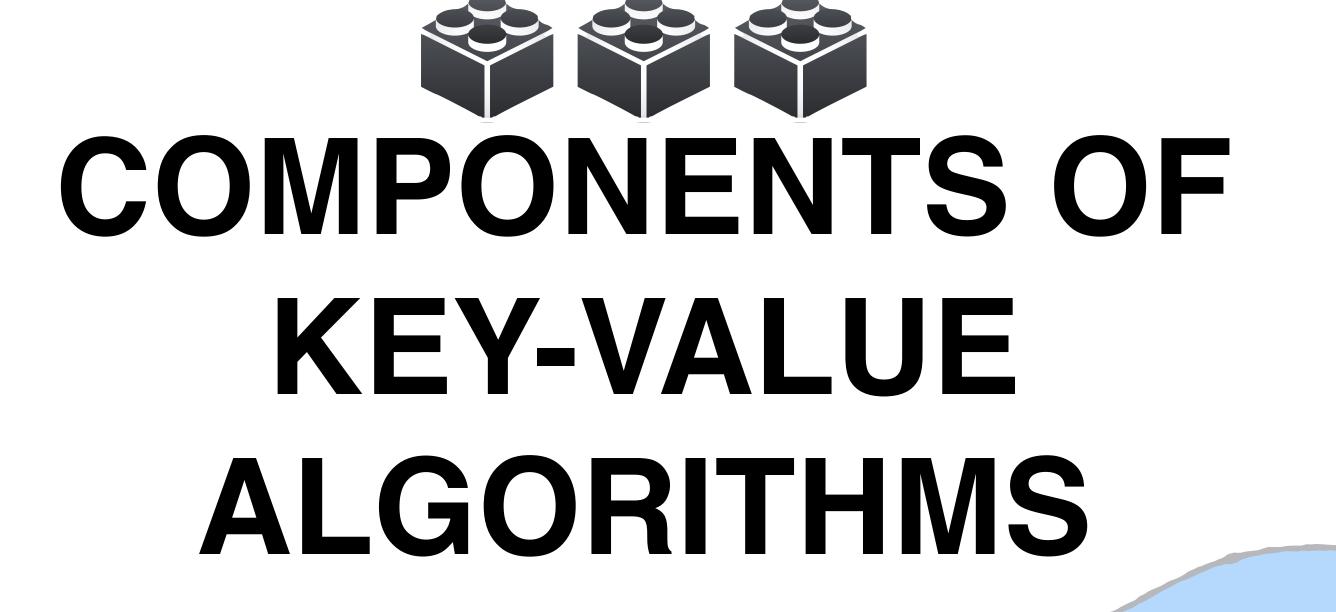
DEPENDS ON HARDWARE ENGINEERING

binary search1
binary search2
interpolation search1
interpolation search2
using new SIMD
instruction X

sorted keys columnar layout

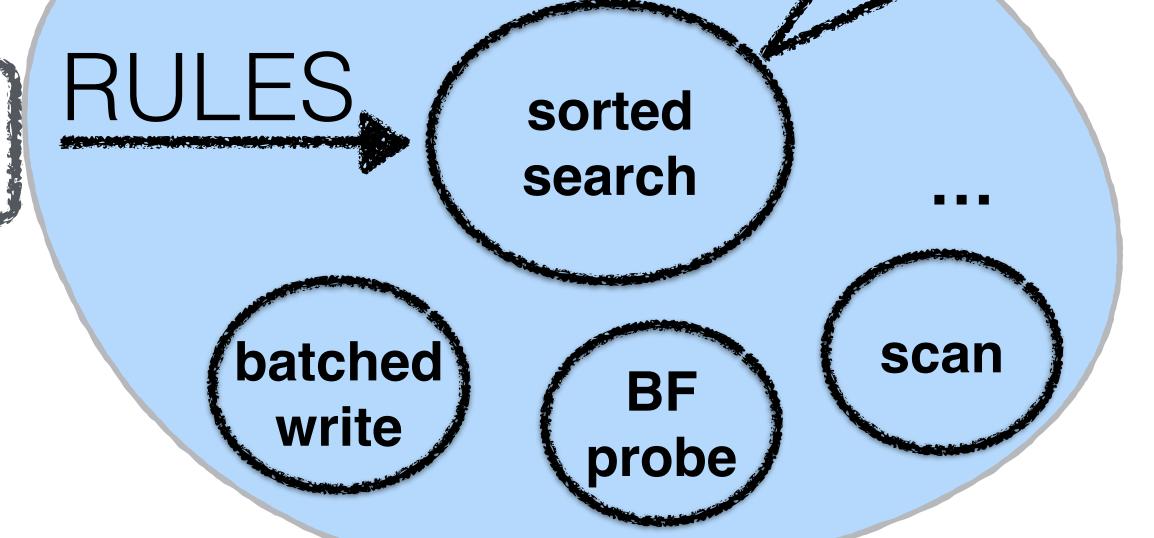
RULES

sorted search



binary search1
binary search2
interpolation search1
interpolation search2
using new SIMD
instruction X

sorted keys columnar layout

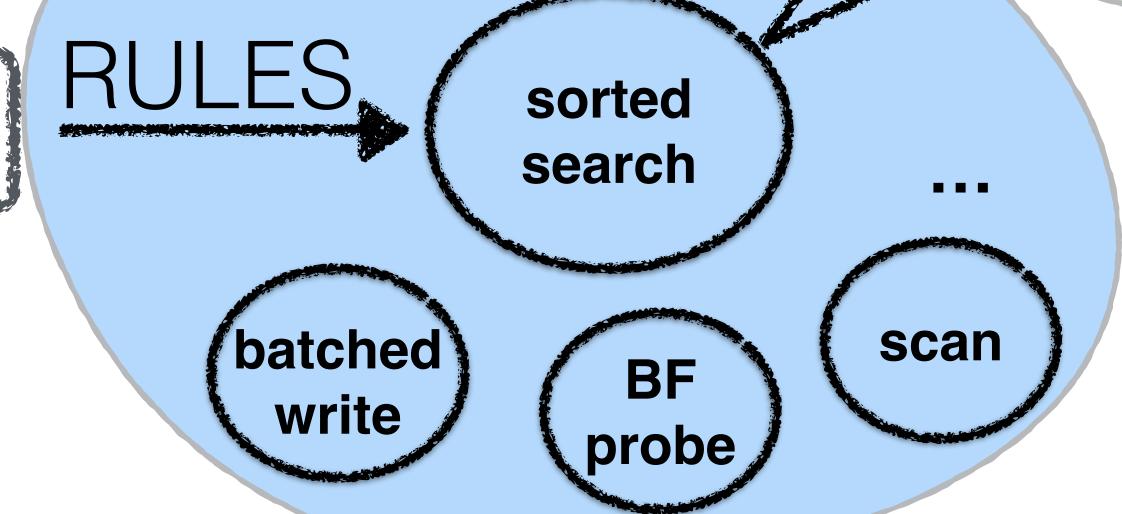


COMPONENTS OF KEY-VALUE ALGORITHMS

binary search1 binary search2 interpolation search1 code, model interpolation search2 code using new SIMD instruction X

LEARNING

sorted keys columnar layout



coding, modeling, generalized models, and a touch of ML

1. MINIMAL CODE

e.g., binary search

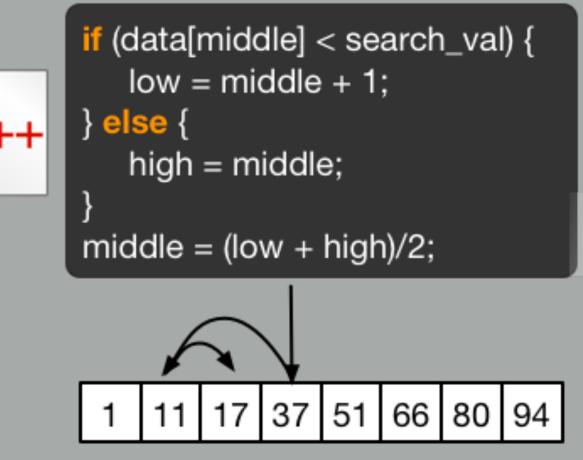
if (data[middle] < search_val) {
 low = middle + 1;
} else {
 high = middle;
}
middle = (low + high)/2;

1 11 17 37 51 66 80 94

coding, modeling, generalized models, and a touch of ML

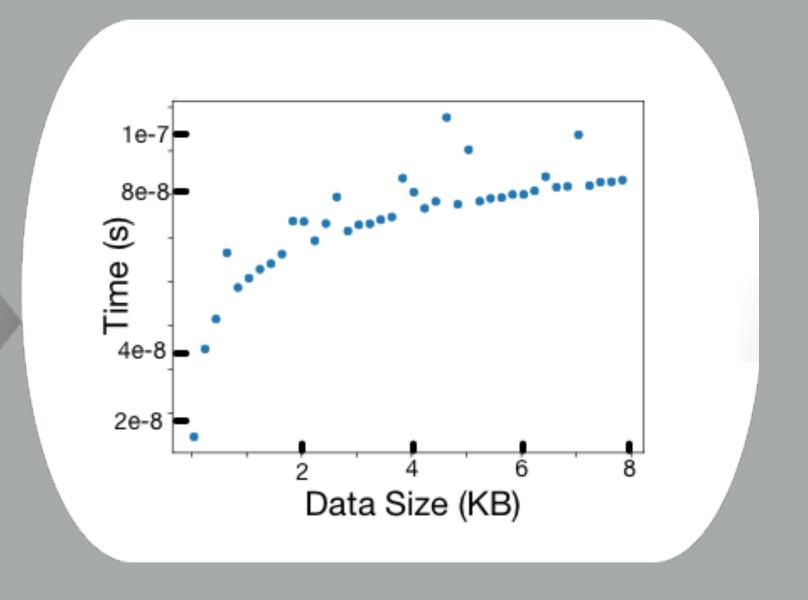
1. MINIMAL CODE

e.g., binary search

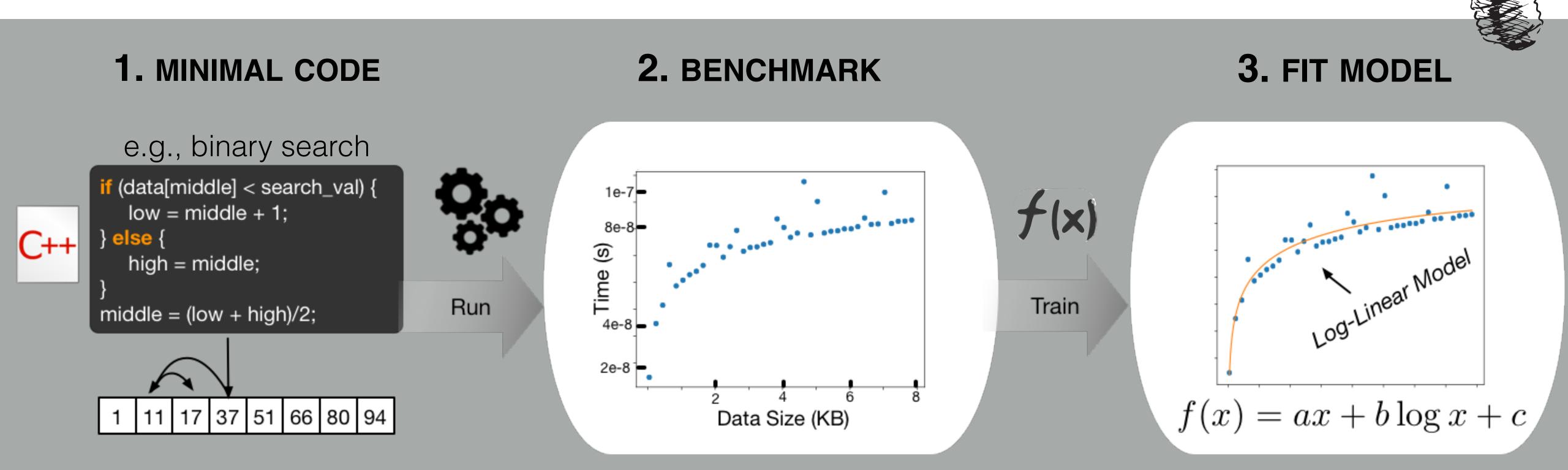


Run

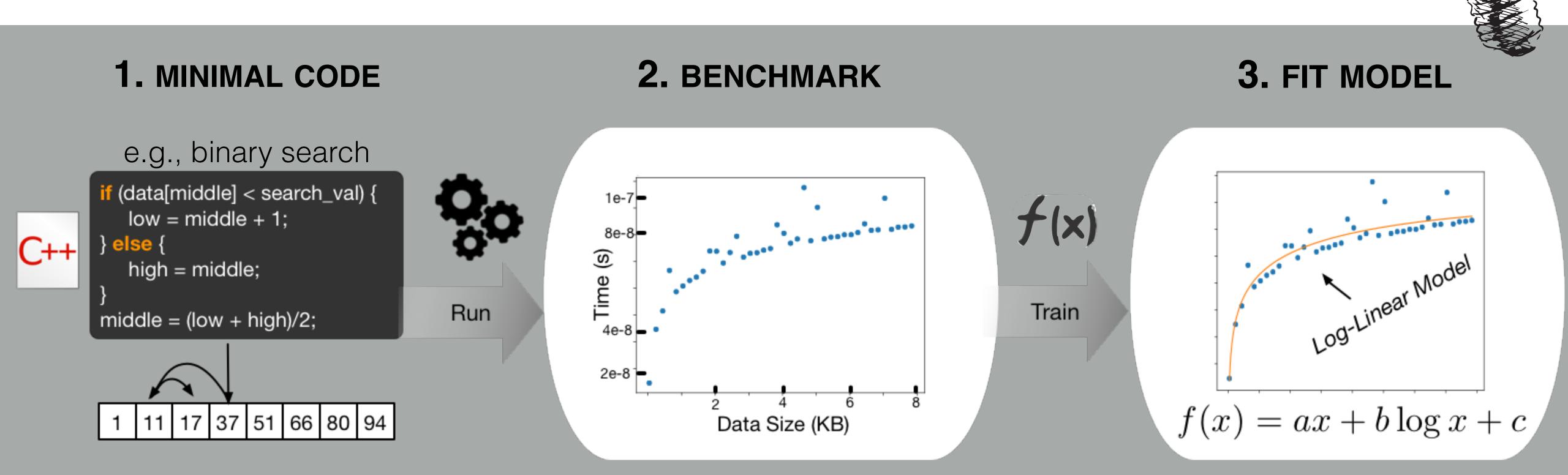
2. BENCHMARK



coding, modeling, generalized models, and a touch of ML

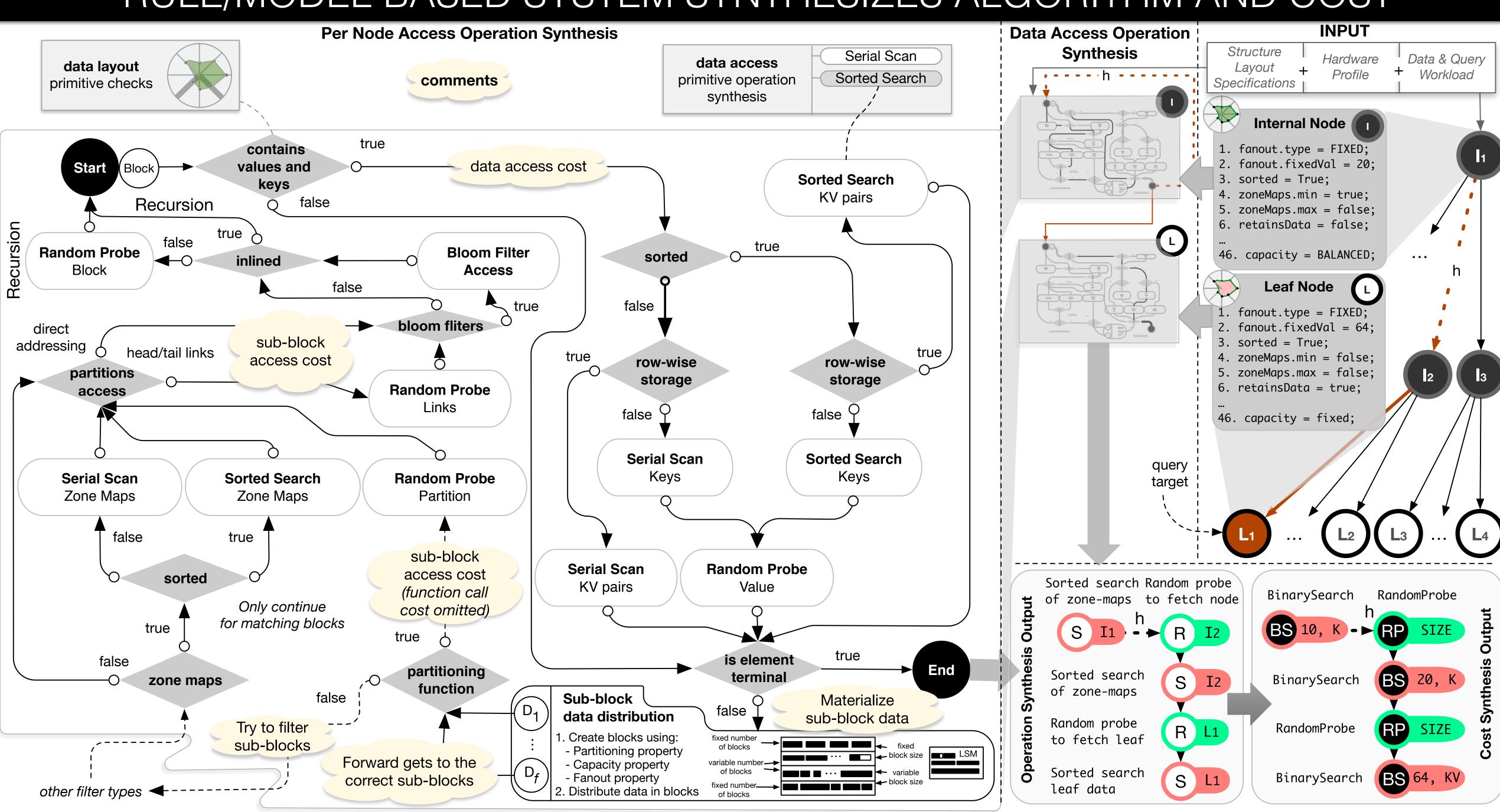


coding, modeling, generalized models, and a touch of ML



FOLDING ALGORITHMIC, ENGINEERING, AND H/W, PROPERTIES INTO THE COEFFICIENTS

RULE/MODEL BASED SYSTEM SYNTHESIZES ALGORITHM AND COST



Stratos Idreos BIG DATA SYSTEMS

NoSQL | Neural Networks | Image AI | LLMs | Data Science