
Stratos Idreos

HOW TO JUDGE A DESIGN?

COMPLEXITY
ANALYSIS

1

HOW TO JUDGE A DESIGN?

COMPLEXITY
ANALYSIS

1

HOW TO JUDGE A DESIGN?

2

IMPLEMENTATION
& TESTING

COMPLEXITY
ANALYSIS

1

HOW TO JUDGE A DESIGN?

2

IMPLEMENTATION
& TESTING

GENERALIZED
MODELS

3

COMPLEXITY
ANALYSIS

1

HOW TO JUDGE A DESIGN?

2

IMPLEMENTATION
& TESTING

GENERALIZED
MODELS

3

This sounds ideal:
is it possible?

ACCESS PATH SELECTION in ANALYTICAL SYSTEMS

data* system

@SIGMOD 2017scan vs secondary index selection

ACCESS PATH SELECTION in ANALYTICAL SYSTEMS

data* system

@SIGMOD 2017
al

go
rit

hm
s/

op
er

at
or

s

data
structure 1

data
structure 3

data
structure 2

scan vs secondary index selection

ACCESS PATH SELECTION in ANALYTICAL SYSTEMS
@SIGMOD 2017

al
go

rit
hm

s/
op

er
at

or
s

data
structure 1

data
structure 3

data
structure 2

scan vs secondary index selection

Pat Selinger

ACCESS PATH SELECTION in ANALYTICAL SYSTEMS
@SIGMOD 2017scan vs secondary index selection

Pat Selinger

P. Selinger et. all, 1979

se
le

ct
ivi

ty

Index is best

Scan is best

ACCESS PATH SELECTION in ANALYTICAL SYSTEMS
@SIGMOD 2017scan vs secondary index selection

Pat Selinger

P. Selinger et. all, 1979

se
le

ct
ivi

ty

Index is best

Scan is best

DO WE STILL NEED INDEXING? (AND IF YES HOW DO WE CHOOSE)

ACCESS PATH SELECTION in ANALYTICAL SYSTEMS
@SIGMOD 2017scan vs secondary index selection

Pat Selinger

P. Selinger et. all, 1979

se
le

ct
ivi

ty

Index is best

Scan is best

ACCESS PATH SELECTION in ANALYTICAL SYSTEMS
@SIGMOD 2017scan vs secondary index selection

Pat Selinger

P. Selinger et. all, 1979

se
le

ct
ivi

ty

Index is best

Scan is best

se
le

ct
ivi

ty

Index is best

Scan is best

multi-core, SIMD, compression,

columnar/hybrid, scan sharing, …

of concurrent queries

ACCESS PATH SELECTION in ANALYTICAL SYSTEMS
@SIGMOD 2017scan vs secondary index selection

Pat Selinger

P. Selinger et. all, 1979

se
le

ct
ivi

ty

Index is best

Scan is best

se
le

ct
ivi

ty

Index is best

Scan is best

multi-core, SIMD, compression,

columnar/hybrid, scan sharing, …

of concurrent queries

10%

Dawn of time 2000 2010

1%

0%
2017 Future

se
le

ct
ivi

ty
 th

re
sh

ol
d

bandwidth

latency

Equation 13 is the combination of five logical parts: tree traver-
sal, leaves traversal, data retrieval, result writing, and result sort-
ing. When compared with Equation 10, the concurrent index access
may traverse the tree multiple times (one for each query). Finally,
the amount of work to write and sort the result depends on the sum
of the selectivity of each query.

2.4 Evaluating Access Path Selection
We now discuss access path selection. Using the model devel-

oped in the previous sections we construct a ratio of the two costs
using Equations 5 and 13. We call this ratio APS (Access Path Se-
lection) and it is defined as APS = ConcIndex

SharedScan . The optimizer in a
modern analytical system can use this model to determine which
access path to deploy (more in §3). When APS � 1 a scan should
be used; when APS < 1 a secondary index access is beneficial.

In the rest of this section we present an analysis that provides
intuition and observations about access path selection choices and
cases, demonstrating evidence that it is indeed useful to support al-
ternative access paths in modern analytical systems and how these
choices are different compared to traditional systems and optimiz-
ers. The analysis in this section is based on modeling. In Sec-
tion §4, we present a detailed experimental analysis that corrobo-
rates the results and provides further insights.
When Should We Switch Access Paths? To ease the presentation
of the APS ratio, we use the four quantities defined in Equations 1,
3, 6, 7, 8, and 14, for both the SharedScan and the SharedIndex
costs: the cost to traverse the tree (T T), the cost to traverse the
leaves (T L), the cost to traverse the data (T DS, T DR, and T DI),
and the sorting factor (SF). The costs related to the tree, T T and
T L, depend on the relation size, the index design and the hardware
characteristics. The costs to traverse the data depend on the data
size and the sustainable read bandwidth. Finally, the sorting factor
SF is incurred by sorting the index output before passing it on to
the next operator in order to build a direct competitor of the scan
operator. Using Equations 5 and 13 the access path selection ratio
is defined as follows:

APS =
q ·T T +Stot (T L+T DI +T DR)+SF ·CA

max(T DS,q ·PE)+Stot ·T DR
(15)

In fact, APS is a multivariate function, that depends on all param-
eters presented in Table 1. For each instance of a system, though,
the hardware and the physical layout decisions are already made.
In addition, at runtime the data set size is also known, so runtime
access path selection is effectively a function of the level of query
concurrency q and the total selectivity Stot : APS (q,Stot).

Following the derivation presented in Appendix B the APS ratio
can be rewritten as follows:

APS (q,Stot) =
q · 1+dlogb(N)e

N ·
⇣

BWS ·CM + b·BWS·CA
2 +

b·BWS· fp·p
2

⌘

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

+
Stot

⇣
BWS·CM

b +(aw+ow) · BWS
BWI

+ rw · BWS
BWR

⌘

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

+
Stot · log2 (Stot ·N) ·BWS ·CA

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

(16)

Understanding the APS Fraction. Equation 16 is comprised from
two different parts. The first one takes into account query concur-
rency q, the data set size N, the index branching factor b, and the
hardware trade-offs: bandwidth vs. LLC miss, and bandwidth vs.
L1 latency. The second part is mainly affected by the predicate
evaluation cost, the total selectivity Stot , and the data layout.

Let us now examine step by step the two parts of the numerator
and the denominator. The first part of the numerator is affected
by the level of concurrency, however, it has a rather small impact
for low q because of the term dlogb(N)e

N . This means that for low
concurrency, the cost of traversing the index is very small. The
cost increases only slightly as concurrency increases. The products
BWS ·CM and b ·BWS ·CA depend on hardware characteristics and
can be explained as follows: The first is the number of bytes that
can be read sequentially from the memory bus in the delay caused
by an LLC miss and the second is the number of bytes that can be
read sequentially from the memory bus in the same duration as b
L1 accesses. Typically, the latter, is about one order of magnitude
smaller than the first. Similarly, the term b ·BWS · fp · p corresponds
to the number of bytes that can be read sequentially during the time
needed to perform the b comparisons when searching which pointer
to follow. These three terms connect scan and index accesses from
the hardware point of view (see more details in Appendix B.1).

The second part of the numerator in Equation 16 is heavily im-
pacted by the total selectivity. The fraction BWS·CM

b gives how many
index nodes can be read sequentially at the time of an LLC miss,
while the remaining part depends largely on the layout of the index
and the result set (and on the relative performance when scanning
data, traversing the tree, and writing results). Lastly, the denomi-
nator is the only place that we see the tuple size ts. This, in turn,
means that having a larger tuple size (that is, having a row store,
or a column group storage) lowers the overall value of the ratio in-
dicating a more useful index. In addition to that, the denominator
includes the cost of predicate evaluation, which will make the scan
more expensive when it is larger than the data movement, which is
the case as concurrency q increases.

For small values of q the second part of the numerator dominates,
and as a result the dynamic parameter for the decision between
scan and index is the total selectivity Stot . On the other hand, as
the number of concurrent queries increases (which is an observed
workload trend [69]), the first part of the numerator and the pred-
icate evaluation part of the denominator in Equation 16 dominate,
hence increasing the significance of query concurrency. Another
way to view the access path selection model in Equation 16 is con-
sider what happens as the data set size increases. For larger N the
impact of q is smaller, however, the observed trends in workloads
and data sets is that both q and N would increase hence keeping
the concurrency as one of the decisive factors of the comparison
between shared scans and concurrent index accesses.
Model Verification. We verify the accuracy of the model using
experimental data from four machines. For each set of experiments,
we used a multidimensional unconstrained nonlinear minimization
technique (Nelder-Mead) to fit the model. More details about the
verification process are available in Appendix C.

2.5 Analysis of the APS Model
We now proceed with a detailed analysis that sheds light on addi-

tional aspects of access path selection and we summarize the find-
ings in a number of observations. We study several cases based on
the model for varying concurrency, selectivity, data size, tuple size,
and hardware characteristics.

The parameterization of the workload, dataset, hardware, and
secondary index tuning parameters, is based on our experimen-
tal setup (see §4). We parameterize the model to match our pri-
mary experimental server using CM = 180ns, CA = 2ns, BWS =
40GB/s, BWI = 20GB/s, and BWR = 20GB/s. We denote this hard-
ware as configuration HW1. We further model an alternate hard-
ware configuration, HW2, with CM = 100ns, and bandwidth BWS =
160GB/s, BWI = 80GB/s, and BWR = 80GB/s. We study the impact

scan vs secondary index selection @SIGMOD 2017

HARD &
SLOW

Equation 13 is the combination of five logical parts: tree traver-
sal, leaves traversal, data retrieval, result writing, and result sort-
ing. When compared with Equation 10, the concurrent index access
may traverse the tree multiple times (one for each query). Finally,
the amount of work to write and sort the result depends on the sum
of the selectivity of each query.

2.4 Evaluating Access Path Selection
We now discuss access path selection. Using the model devel-

oped in the previous sections we construct a ratio of the two costs
using Equations 5 and 13. We call this ratio APS (Access Path Se-
lection) and it is defined as APS = ConcIndex

SharedScan . The optimizer in a
modern analytical system can use this model to determine which
access path to deploy (more in §3). When APS � 1 a scan should
be used; when APS < 1 a secondary index access is beneficial.

In the rest of this section we present an analysis that provides
intuition and observations about access path selection choices and
cases, demonstrating evidence that it is indeed useful to support al-
ternative access paths in modern analytical systems and how these
choices are different compared to traditional systems and optimiz-
ers. The analysis in this section is based on modeling. In Sec-
tion §4, we present a detailed experimental analysis that corrobo-
rates the results and provides further insights.
When Should We Switch Access Paths? To ease the presentation
of the APS ratio, we use the four quantities defined in Equations 1,
3, 6, 7, 8, and 14, for both the SharedScan and the SharedIndex
costs: the cost to traverse the tree (T T), the cost to traverse the
leaves (T L), the cost to traverse the data (T DS, T DR, and T DI),
and the sorting factor (SF). The costs related to the tree, T T and
T L, depend on the relation size, the index design and the hardware
characteristics. The costs to traverse the data depend on the data
size and the sustainable read bandwidth. Finally, the sorting factor
SF is incurred by sorting the index output before passing it on to
the next operator in order to build a direct competitor of the scan
operator. Using Equations 5 and 13 the access path selection ratio
is defined as follows:

APS =
q ·T T +Stot (T L+T DI +T DR)+SF ·CA

max(T DS,q ·PE)+Stot ·T DR
(15)

In fact, APS is a multivariate function, that depends on all param-
eters presented in Table 1. For each instance of a system, though,
the hardware and the physical layout decisions are already made.
In addition, at runtime the data set size is also known, so runtime
access path selection is effectively a function of the level of query
concurrency q and the total selectivity Stot : APS (q,Stot).

Following the derivation presented in Appendix B the APS ratio
can be rewritten as follows:

APS (q,Stot) =
q · 1+dlogb(N)e

N ·
⇣

BWS ·CM + b·BWS·CA
2 +

b·BWS· fp·p
2

⌘

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

+
Stot

⇣
BWS·CM

b +(aw+ow) · BWS
BWI

+ rw · BWS
BWR

⌘

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

+
Stot · log2 (Stot ·N) ·BWS ·CA

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

(16)

Understanding the APS Fraction. Equation 16 is comprised from
two different parts. The first one takes into account query concur-
rency q, the data set size N, the index branching factor b, and the
hardware trade-offs: bandwidth vs. LLC miss, and bandwidth vs.
L1 latency. The second part is mainly affected by the predicate
evaluation cost, the total selectivity Stot , and the data layout.

Let us now examine step by step the two parts of the numerator
and the denominator. The first part of the numerator is affected
by the level of concurrency, however, it has a rather small impact
for low q because of the term dlogb(N)e

N . This means that for low
concurrency, the cost of traversing the index is very small. The
cost increases only slightly as concurrency increases. The products
BWS ·CM and b ·BWS ·CA depend on hardware characteristics and
can be explained as follows: The first is the number of bytes that
can be read sequentially from the memory bus in the delay caused
by an LLC miss and the second is the number of bytes that can be
read sequentially from the memory bus in the same duration as b
L1 accesses. Typically, the latter, is about one order of magnitude
smaller than the first. Similarly, the term b ·BWS · fp · p corresponds
to the number of bytes that can be read sequentially during the time
needed to perform the b comparisons when searching which pointer
to follow. These three terms connect scan and index accesses from
the hardware point of view (see more details in Appendix B.1).

The second part of the numerator in Equation 16 is heavily im-
pacted by the total selectivity. The fraction BWS·CM

b gives how many
index nodes can be read sequentially at the time of an LLC miss,
while the remaining part depends largely on the layout of the index
and the result set (and on the relative performance when scanning
data, traversing the tree, and writing results). Lastly, the denomi-
nator is the only place that we see the tuple size ts. This, in turn,
means that having a larger tuple size (that is, having a row store,
or a column group storage) lowers the overall value of the ratio in-
dicating a more useful index. In addition to that, the denominator
includes the cost of predicate evaluation, which will make the scan
more expensive when it is larger than the data movement, which is
the case as concurrency q increases.

For small values of q the second part of the numerator dominates,
and as a result the dynamic parameter for the decision between
scan and index is the total selectivity Stot . On the other hand, as
the number of concurrent queries increases (which is an observed
workload trend [69]), the first part of the numerator and the pred-
icate evaluation part of the denominator in Equation 16 dominate,
hence increasing the significance of query concurrency. Another
way to view the access path selection model in Equation 16 is con-
sider what happens as the data set size increases. For larger N the
impact of q is smaller, however, the observed trends in workloads
and data sets is that both q and N would increase hence keeping
the concurrency as one of the decisive factors of the comparison
between shared scans and concurrent index accesses.
Model Verification. We verify the accuracy of the model using
experimental data from four machines. For each set of experiments,
we used a multidimensional unconstrained nonlinear minimization
technique (Nelder-Mead) to fit the model. More details about the
verification process are available in Appendix C.

2.5 Analysis of the APS Model
We now proceed with a detailed analysis that sheds light on addi-

tional aspects of access path selection and we summarize the find-
ings in a number of observations. We study several cases based on
the model for varying concurrency, selectivity, data size, tuple size,
and hardware characteristics.

The parameterization of the workload, dataset, hardware, and
secondary index tuning parameters, is based on our experimen-
tal setup (see §4). We parameterize the model to match our pri-
mary experimental server using CM = 180ns, CA = 2ns, BWS =
40GB/s, BWI = 20GB/s, and BWR = 20GB/s. We denote this hard-
ware as configuration HW1. We further model an alternate hard-
ware configuration, HW2, with CM = 100ns, and bandwidth BWS =
160GB/s, BWI = 80GB/s, and BWR = 80GB/s. We study the impact

scan vs secondary index selection @SIGMOD 2017

Access Path Selection in Main-Memory Optimized Data
Systems: Should I Scan or Should I Probe? Michael Kester,
Manos Athanassoulis, Stratos Idreos. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, 2017

models/advisors
S. BING YAO

model synthesis
STEFAN MANEGOLD

We need something else: Something more scalable & robust!

POSSIBLE DATA
 LAYOUTSrea

d

write

memory

POSSIBLE DATA
 LAYOUTSrea

d

write

memory

operation

POSSIBLE DATA
 LAYOUTSrea

d

write

memory

COST SYNTHESIS
ALGORITHM &

operation

POSSIBLE DATA
 LAYOUTSrea

d

write

memory

synthesize access pattern

RULES
If …, then …, else

operation

POSSIBLE DATA
 LAYOUTSrea

d

write

memory

sorted keys
columnar layout

sorted
search

RULESsorted keys
columnar layout

sorted
search

RULES

binary search1

interpolation search1
binary search2

interpolation search2

…

using new SIMD
instruction X

DEPENDS ON
HARDWARE
ENGINEERING

sorted keys
columnar layout

sorted
search

RULES

binary search1

interpolation search1
binary search2

interpolation search2

…

using new SIMD
instruction X

sorted keys
columnar layout …

scanBF
probe

batched
write

COMPONENTS OF
KEY-VALUE

ALGORITHMS

sorted
search

RULES

binary search1

interpolation search1
binary search2

interpolation search2

…

using new SIMD
instruction X

sorted keys
columnar layout …

scanBF
probe

batched
write

LEARNING

code,
model

code,
model

code,
model

COMPONENTS OF
KEY-VALUE

ALGORITHMS

1. MINIMAL CODE 2. BENCHMARK 3. FIT MODEL

e.g., binary search

SYNTHESIS FROM LEARNED MODELS
coding, modeling, generalized models, and a touch of ML

1. MINIMAL CODE 2. BENCHMARK 3. FIT MODEL

e.g., binary search

SYNTHESIS FROM LEARNED MODELS
coding, modeling, generalized models, and a touch of ML

1. MINIMAL CODE 2. BENCHMARK 3. FIT MODEL

e.g., binary search

SYNTHESIS FROM LEARNED MODELS
coding, modeling, generalized models, and a touch of ML

1. MINIMAL CODE 2. BENCHMARK 3. FIT MODEL

e.g., binary search

FOLDING ALGORITHMIC, ENGINEERING, AND H/W, PROPERTIES INTO THE COEFFICIENTS

SYNTHESIS FROM LEARNED MODELS
coding, modeling, generalized models, and a touch of ML

I2 I3

L2 L3 L4… …

…

query
target

h

co
nta
ins
dat
a

co
mp
res
se
d

sor
ted

ro
w-
wi
se
sto
rag
e

Serial
Scan
Keys

ro
w-
wi
se
sto
rag
e

Sorte
d

Searc
h

Keys

yes yes

no

no

yes

Decomp
ress
Data

Random
Probe
Value

no no

Serial
Scan
KV

pairs

yes

Sorted
Search
KV pairs

yes

blo
ck
s

no

par
titi
oni
ng
Fu
nct
ion

no

yes

Random
Probe

Partition

yes

zo
ne
ma
ps

no

par
titi
on
s

ac
ce
ss

no

sor
ted

yes

Serial Scan
Zone Maps

Sorted
Search Zone

Maps

yesno

Bloom
Filter
Acces

s

inli
ne
d

Random
Probe
Block

Block

D1

Dn

…

If this element partitions data
in blocks, go over each block

Try to prune some of the blocks using
filters such us zone maps and bloom filters

Only continue
for matching blocks

Materialize
sub-blocks

Partitioning?
 - Log structured
 - Function?
Capacity?
Fanout?

blo
om
flit
ers

Rando
m

Probe
Links

head/tail links

co
nta
ins
dat
a

co
mp
res
se
d

sor
ted

ro
w-
wi
se
sto
rag
e

Serial
Scan
Keys

ro
w-
wi
se
sto
rag
e

Sorte
d

Searc
h

Keys

yes yes

no

no

yes

Decomp
ress
Data

Random
Probe
Value

no no

Serial
Scan
KV

pairs

yes

Sorted
Search
KV pairs

yes

blo
ck
s

no

par
titi
oni
ng
Fu
nct
ion

no

yes

Random
Probe

Partition

yes

zo
ne
ma
ps

no

par
titi
on
s

ac
ce
ss

no

sor
ted

yes

Serial Scan
Zone Maps

Sorted
Search Zone

Maps

yesno

Bloom
Filter
Acces

s

inli
ne
d

Random
Probe
Block

Block

D1

Dn

…

If this element partitions data
in blocks, go over each block

Try to prune some of the blocks using
filters such us zone maps and bloom filters

Only continue
for matching blocks

Materialize
sub-blocks

Partitioning?
 - Log structured
 - Function?
Capacity?
Fanout?

blo
om
flit
ers

Rando
m

Probe
Links

head/tail links

I

L

h

Start
 contains

values and
keys

sorted

row-wise
storage

Serial Scan
Keys

row-wise
storage

Sorted Search
Keys

true

false

true

Random Probe
Value

false false

Serial Scan
KV pairs

true

Sorted Search
KV pairs

true

is element
terminal End

false

partitioning
function

true

false

Random Probe
Partition

true

zone maps
false

partitions
access

false

sorted

true

Serial Scan
Zone Maps

Sorted Search
Zone Maps

truefalse

Bloom Filter
AccessinlinedRandom Probe

Block

truefalse

direct
addressing

Block

D1

Df

…

other filter types

Only continue
for matching blocks

 Sub-block
 data distribution
1. Create blocks using:
 - Partitioning property
 - Capacity property
 - Fanout property
2. Distribute data in blocks

bloom fliters

Random Probe
Links

head/tail links

false
true

Serial Scan
Sorted Search

data access
primitive operation

synthesis

data layout
primitive checks

Internal Node

1. fanout.type = FIXED;
2. fanout.fixedVal = 20;
3. sorted = True;
4. zoneMaps.min = true;
5. zoneMaps.max = false;
6. retainsData = false;
…
46. capacity = BALANCED;

I

Leaf Node

1. fanout.type = FIXED;
2. fanout.fixedVal = 64;
3. sorted = True;
4. zoneMaps.min = false;
5. zoneMaps.max = false;
6. retainsData = true;
…
46. capacity = fixed;

L

I1

Data Access Operation
Synthesis

INPUTPer Node Access Operation Synthesis

Re
cu

rs
io

n

Recursion

LSM…
…

fixed
block size

variable
block size

variable number
of blocks

fixed number
of blocks

fixed number
of blocks

L1

Hardware
Profile

Data & Query
Workload

Structure
Layout

Specifications
+ +

R I2
h

L1

Sorted search
of zone-maps

Random probe
to fetch leaf

S I2Sorted search
of zone-maps

Sorted search
leaf data

Random probe
to fetch node

I1S

L1R

S

RP SIZE
h

64, KV

BinarySearch

RandomProbe

BS 20, KBinarySearch

BinarySearch

RandomProbe

10, KBS

SIZERP

BSOp
er

at
io

n
Sy

nt
he

sis
 O

ut
pu

t

Co
st

 S
yn

th
es

is
Ou

tp
ut

Materialize
sub-block data

Forward gets to the
correct sub-blocks

Try to filter
sub-blocks

sub-block
access cost
(function call
cost omitted)

sub-block
access cost

data access cost

comments

RULE/MODEL BASED SYSTEM SYNTHESIZES ALGORITHM AND COST

Stratos Idreos

