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BITS PER ENTRY IN FILTERS: OPTIMIZED OUT

Monkey: Optimal Navigable Key-Value Store @SIGMOD2017

worst lookup cost:
3§ sum of false positive rates
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Monkey: Optimal Navigable Key-Value Store @SIGMOD2017
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MERGE POLICY: SHOULD BE TUNED @SIGMOD2018

Dostoevsky: Space-Time Optimized Evolvable Scalable Key-Value Store

merge policy:
j  fixed across levels
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» Dostoevsky: Space-Time Optimized Evolvable Scalable Key-Value Store

merging small levels does not
help that much (point,range,space)
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Dostoevsky: Space-Time Optimized Evolvable Scalable Key-Value Store

merging small levels does not
help that much (point,range,spac

g

Nﬁ

~

1.0 300000000000 Dostoevsky
0.8 Y Monkey
0.7

0.6

RocksDB
)5 well tunead

o 03 =5 — RocksDB
i@ Level N |

normalized throughput (ops/s)
o

O

o 10~ 1

DFIS | ab read/write

@ Harvard SEAS




201B 2001B 2PB 20PB
103 180k {28 Data Size
ﬁDFISIab

@ Harvard SEAS Amazon Cloud (North America)




201B 2001B 2PB 20PB
ﬁDFISIab

@ Harvard SEAS Amazon Cloud (North America)




201B 2001B 2PB 20PB
ﬁDFISIab

@ Harvard SEAS Amazon Cloud (North America)




Summary

Once you understand the design, you can think of new ideas.
Just keep asking “why".
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Summary

Once you understand the design, you can think of new ideas.
Just keep asking “why".

Tons of opportunities in big data as everything is new and changing.

Once you think of a new idea, then it is just about following
good research practices = requires technical skills but easier
(just following steps).
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What would the performance be

f we were to implement that design
N a specific programming language
and test a specific workload
on a specific hardware
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What would the performance be

f we were to implement that design
N a specific programming language
and test a specific workload
on a specific hardware

It we have the cost for 2 designs
we can compare them, and
we can build search algos
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