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Labs start next week 

Three times a week. (schedule on class website).

Labs are for systems projects only. Research projects will have diff sessions. 


Logistics:
Class forum (Ed): this weekend




Labs start next week 

Three times a week. (schedule on class website).

Labs are for systems projects only. Research projects will have diff sessions. 


Systems projects can start as of next week
Step 1: Go to labs to start to understand what is needed and how to start.

TFs will also release two intro sections next week

Logistics:
Class forum (Ed): this weekend




Logistics on NN Systems Project
Second MLsys systems project ready. 
Optimize data movement for neural network training

One vision and one LLM model. 

Implementing M2 paper. 

Available on the class website.


μ-TWO: 3x Faster Multi-model Training with Orchestration 
and Memory Optimization



“Can I propose an idea for a research 
project?”
Absolutely. If it fits the following questions:


Making SQL,NoSQL, LLMs, Image AI: 

faster, understanding design space, adding design automation 




What do we want to achieve: what if design example
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filters to my B-tree? 
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What if I need to reduce 


memory by 50%? 
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brings 60% more writes? 

What if I add bloom 

filters to my B-tree? 
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what-if design
What if I need to reduce 


memory by 50%? 

Cost in Amazon 
Cloud?


Which workload 
breaks my system?

Should I buy new 
hardware X?

What if add feature X that 

brings 60% more writes? 

What if I add bloom 

filters to my B-tree? 



DESIGN SPACE COST SYNTHESIS
 WHAT-IF

Three steps required



Today:

Building a design space in detail: Data structures


Next level of technical detail in KV-stores: merging/levels
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Are keys retained? (yes, no, function)
Are values retained?
Utilization? (e.g., >50%)

Key partitioning (none(fw-append | bw-append) | sorted | range() | radix() | function (func) | temporal(…)) 


Fanout (fixed/functional | unlimited | terminal |)


Intra node access (direct | head_link | tail_link | link_function(func))


Sub block links (next | previous | both | none) 


Sub block skip links (perfect | randomized(prob: double) | function(func) | none) 
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Utilization? (e.g., >50%)

Key partitioning (none(fw-append | bw-append) | sorted | range() | radix() | function (func) | temporal(…)) 


Fanout (fixed/functional | unlimited | terminal |)


Intra node access (direct | head_link | tail_link | link_function(func))
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Sub block skip links (perfect | randomized(prob: double) | function(func) | none) 


Zone Maps (min | max | both | exact | off) 


Bloom filters (off | on(num_hashes: int, num_bits: int)) 


Filters layout (consolidate | scatter)


Links layout (consolidate | scatter)




Are keys retained? (yes, no, function)
Are values retained?
Utilization? (e.g., >50%)

Key partitioning (none(fw-append | bw-append) | sorted | range() | radix() | function (func) | temporal(…)) 


Fanout (fixed/functional | unlimited | terminal |)


Intra node access (direct | head_link | tail_link | link_function(func))


Sub block links (next | previous | both | none) 


Sub block skip links (perfect | randomized(prob: double) | function(func) | none) 


Zone Maps (min | max | both | exact | off) 


Bloom filters (off | on(num_hashes: int, num_bits: int)) 


Physical location (inline | pointed | double- pointed)
Physical layout (BFS | scatter)


Filters layout (consolidate | scatter)


Links layout (consolidate | scatter)
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 Primitives and Instances
Unless otherwise specified, we use a 

reduced default values domain of 
100 values for integers, 10 values for 

doubles, and 1 value for functions.

Hash Table B+Tree/CSB+Tree/FAST
LPL

Primitive Domain size H LL UDP B+ CSB+ FAST ODP

N
od

e 
or

ga
ni

za
tio

n

1 Key retention. No: node contains no real key data, e.g., intermediate nodes of 
b+trees and linked lists. Yes: contains complete key data, e.g., nodes of b-trees, 
and arrays. Function:  contains only a subset of the key, i.e., as in tries.

yes | no | function(func) 3

no no yes no no no yes
2 Value retention. No: node contains no real value data, e.g., intermediate nodes 

of b+trees, and linked lists. Yes: contains complete value data, e.g., nodes of b-
trees, and arrays. Function:  contains only a subset of the values.

yes | no | function(func) 3

no no yes no no no yes
3 Key order. Determines the order of keys in a node or the order of fences if real 

keys are not retained.
none | sorted | k-ary (k: int) 12

none none none sorted sorted 4-ary sorted
4 Key-value layout. Determines the physical layout of key-value pairs. row-wise | columnar | col-row-

groups(size: int) 12 co
l.

co
l.

Rules: requires key retention != no or value retention != no.
5 Intra-node access. Determines how sub-blocks (one or more keys of this node) 

can be addressed and retrieved within a node, e.g., with direct links, a link only 
to the first or last block, etc. 

direct | head_link | tail_link | 
link_function(func) 4

di
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ct

he
ad

di
re

ct

di
re

ct

di
re

ct

di
re

ct

di
re

ct

6 Utilization. Utilization constraints in regards to capacity. For example, >= 50% 
denotes that utilization has to be greater than or equal to half the capacity.

 >= (X%) | function(func) | none         
(we currently only consider X=50) 3

none none none
>= 

50%
>= 

50%
>= 

50% none

N
od

e 
fil

te
rs

7 Bloom filters. A node's sub-block can be filtered using bloom filters. Bloom 
filters get as parameters the number of hash functions and number of bits.

off | on(num_hashes: int, 
num_bits: int)                              
(up to 10 num_hashes considered) 10

01

off off off off off off off
8 Zone map filters. A node's sub-block can be filitered using zone maps, e.g., they 

can filter based on mix/max keys in each sub-block.
min | max | both | exact | off 5

off off off min min min off
9 Filters memory layout. Filters are stored contiguously in a single area of the 

node or scattered across the sub-blocks. consolidate | scatter 2

sc
at

te
r 

sc
at

te
r 

sc
at

te
r 

Rules: requires bloom filter != off or zone map filters != off.

Pa
rt
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g

10 Fanout/Radix. Fanout of current node in terms of sub-blocks. This can either be 
unlimited (i.e., no restriction on the number of sub-blocks), fixed to a number, 
decided by a function or the node is terminal and thus has a fixed capacity.

fixed(value: int) | function(func) 
| unlimited | terminal(cap: int)                         

(up to 10 different capacities and up 
to 10 fixed fanout values are 

considered)
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11 Key partitioning. Set if there is a pre-defined key partitioning imposed. e.g. the 
sub-block where a key is located can be dictated by a radix or range partitioning 
function. Alternatively, keys can be temporaly partitioned. If partitioning is set to 
none, then keys can be forward or backwards appended.

none(fw-append |  bw-append) 
| range() | radix() | function
(func) | temporal(size_ratio: 

int, merge_policy: [tier| level]) 

205

ra
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)
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(fw
)
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ne
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)
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ne
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)
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ne

(fw
)

no
ne

(fw
)

12 Sub-block capacity. Capacity of each sub-block. It can either be fixed to a value, 
or balanced (i.e., all sub-blocks have the same size), unrestricted or functional.

fixed(value: int) | balanced | 
unrestricted | function(func)                         

(up to 10 different fixed capacity 
values are considered)

13

un
re

st
ric

t.

fix
ed

(2
56

)

ba
la

nc
ed

ba
la

nc
ed

ba
la

nc
ed

Rules: requires key partitioning != none.
13 Immediate node links. Whether and how sub-blocks are connected. next | previous | both | none 4 none next none none none none none
14 Skip node links. Each sub-block can be connected to another sub-block (not only 

the next or previous) with skip-links. They can be perfect, randomized or 
custom.

 perfect | randomized(prob: 
double) | function(func) | none 13 none none none none none none none

15 Area-links.  Each sub-tree can be connected with another sub-tree at the leaf 
level throu area links. Examples include the linked leaves of a B+Tree.

forward | backward | both | 
none 4 none none forw. none none none none

Ch
ild

re
n 

la
yo

ut

16 Sub-block physical location. This represents the physical location of
the sub-blocks. Pointed: in heap, Inline: block physically contained in parent. 
Double-pointed: in heap but with pointers back to the parent.

inline | pointed | double-
pointed 3

po
in

te
d
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e
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te
d
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te
d

po
in

te
d

Rules: requires fanout/radix  != terminal.
17 Sub-block physical layout.  This represents the physical layout of sub-blocks. 

Scatter: random placement in memory. BFS: laid out in a breadth-first layout. 
BFS layer list: hierarchical level nesting of BFS layouts.

BFS | BFS layer(level-grouping: 
int) | scatter                                           

(up to 3 different values for layer-
grouping are considered)

5

sc
at
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r
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te
r
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r
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S

BF
S-

LL
Rules: requires fanout/radix  != terminal.

18 Sub-blocks homogeneous. Set to true if all sub-blocks are of the same type.
boolean 2

tr
ue

 

tr
ue

 

tr
ue

 

tr
ue

 

tr
ue

 

Rules: requires fanout/radix  != terminal.
19 Sub-block consolidation. Single children are merged with their parents.

boolean 2

fa
lse

 

fa
lse

 

fa
lse

 

fa
lse

 

fa
lse

 

Rules: requires fanout/radix  != terminal.
20 Sub-block instantiation. If it is set to eager, all sub-blocks are initialized, 

otherwise they are initialized only when data are available (lazy). lazy | eager 2 la
zy

la
zy

la
zy

la
zy

la
zy

Rules: requires fanout/radix  != terminal.
21 Sub-block links layout. If there exist links, are they all stored in a single array 

(consolidate) or spread at a per partition level (scatter). consolidate | scatter 2

sc
at

te
r

Rules: requires immediate node links != none or skip links != none.

Re
cu

rs
io

n 22 Recursion allowed.  If set to yes, sub-blocks will be subsequently inserted into a 
node of the same type until a maximum depth (expressed as a function) is 
reached. Then the terminal node type of this data structure will be used.

yes(func)  | no 3

no no ye
s(

lo
gn

)

ye
s(

lo
gn

)

ye
s(

lo
gn

)

Rules: requires fanout/radix != terminal.
Total number of property combinations > 10^18 / 60 invalid combinations ≈ 10^16

Node descriptions: H : Hash, LL: Linked List, LPL: Linked Page-List, UDP: Unordered Data Page, B+: B+Tree Internal Node
CSB+: CSB+Tree Internal Node, FAST: FAST Internal node, ODP: Ordered Data Page (Nodes highlighted with gray are terminal leaf nodes)
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Unless otherwise specified, we use a 
reduced default values domain of 

100 values for integers, 10 values for 
doubles, and 1 value for functions.

Hash Table B+Tree/CSB+Tree/FAST
LPL

Primitive Domain size H LL UDP B+ CSB+ FAST ODP

N
od

e 
or
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za
tio

n

1 Key retention. No: node contains no real key data, e.g., intermediate nodes of 
b+trees and linked lists. Yes: contains complete key data, e.g., nodes of b-trees, 
and arrays. Function:  contains only a subset of the key, i.e., as in tries.

yes | no | function(func) 3

no no yes no no no yes
2 Value retention. No: node contains no real value data, e.g., intermediate nodes 

of b+trees, and linked lists. Yes: contains complete value data, e.g., nodes of b-
trees, and arrays. Function:  contains only a subset of the values.

yes | no | function(func) 3

no no yes no no no yes
3 Key order. Determines the order of keys in a node or the order of fences if real 

keys are not retained.
none | sorted | k-ary (k: int) 12

none none none sorted sorted 4-ary sorted
4 Key-value layout. Determines the physical layout of key-value pairs. row-wise | columnar | col-row-

groups(size: int) 12 co
l.

co
l.

Rules: requires key retention != no or value retention != no.
5 Intra-node access. Determines how sub-blocks (one or more keys of this node) 

can be addressed and retrieved within a node, e.g., with direct links, a link only 
to the first or last block, etc. 

direct | head_link | tail_link | 
link_function(func) 4

di
re

ct

he
ad
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re
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6 Utilization. Utilization constraints in regards to capacity. For example, >= 50% 
denotes that utilization has to be greater than or equal to half the capacity.

 >= (X%) | function(func) | none         
(we currently only consider X=50) 3

none none none
>= 

50%
>= 

50%
>= 

50% none

N
od
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rs

7 Bloom filters. A node's sub-block can be filtered using bloom filters. Bloom 
filters get as parameters the number of hash functions and number of bits.

off | on(num_hashes: int, 
num_bits: int)                              
(up to 10 num_hashes considered) 10

01

off off off off off off off
8 Zone map filters. A node's sub-block can be filitered using zone maps, e.g., they 

can filter based on mix/max keys in each sub-block.
min | max | both | exact | off 5

off off off min min min off
9 Filters memory layout. Filters are stored contiguously in a single area of the 

node or scattered across the sub-blocks. consolidate | scatter 2

sc
at

te
r 

sc
at

te
r 

sc
at

te
r 

Rules: requires bloom filter != off or zone map filters != off.

Pa
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10 Fanout/Radix. Fanout of current node in terms of sub-blocks. This can either be 
unlimited (i.e., no restriction on the number of sub-blocks), fixed to a number, 
decided by a function or the node is terminal and thus has a fixed capacity.

fixed(value: int) | function(func) 
| unlimited | terminal(cap: int)                         

(up to 10 different capacities and up 
to 10 fixed fanout values are 

considered)

22
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11 Key partitioning. Set if there is a pre-defined key partitioning imposed. e.g. the 
sub-block where a key is located can be dictated by a radix or range partitioning 
function. Alternatively, keys can be temporaly partitioned. If partitioning is set to 
none, then keys can be forward or backwards appended.

none(fw-append |  bw-append) 
| range() | radix() | function
(func) | temporal(size_ratio: 

int, merge_policy: [tier| level]) 
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12 Sub-block capacity. Capacity of each sub-block. It can either be fixed to a value, 
or balanced (i.e., all sub-blocks have the same size), unrestricted or functional.

fixed(value: int) | balanced | 
unrestricted | function(func)                         

(up to 10 different fixed capacity 
values are considered)

13

un
re

st
ric

t.
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ed
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56

)
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Rules: requires key partitioning != none.
13 Immediate node links. Whether and how sub-blocks are connected. next | previous | both | none 4 none next none none none none none
14 Skip node links. Each sub-block can be connected to another sub-block (not only 

the next or previous) with skip-links. They can be perfect, randomized or 
custom.

 perfect | randomized(prob: 
double) | function(func) | none 13 none none none none none none none

15 Area-links.  Each sub-tree can be connected with another sub-tree at the leaf 
level throu area links. Examples include the linked leaves of a B+Tree.

forward | backward | both | 
none 4 none none forw. none none none none

Ch
ild
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n 
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16 Sub-block physical location. This represents the physical location of
the sub-blocks. Pointed: in heap, Inline: block physically contained in parent. 
Double-pointed: in heap but with pointers back to the parent.

inline | pointed | double-
pointed 3
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e
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d
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d

Rules: requires fanout/radix  != terminal.
17 Sub-block physical layout.  This represents the physical layout of sub-blocks. 

Scatter: random placement in memory. BFS: laid out in a breadth-first layout. 
BFS layer list: hierarchical level nesting of BFS layouts.

BFS | BFS layer(level-grouping: 
int) | scatter                                           

(up to 3 different values for layer-
grouping are considered)

5
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r
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Rules: requires fanout/radix  != terminal.
18 Sub-blocks homogeneous. Set to true if all sub-blocks are of the same type.

boolean 2
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Rules: requires fanout/radix  != terminal.
19 Sub-block consolidation. Single children are merged with their parents.

boolean 2
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Rules: requires fanout/radix  != terminal.
20 Sub-block instantiation. If it is set to eager, all sub-blocks are initialized, 

otherwise they are initialized only when data are available (lazy). lazy | eager 2 la
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Rules: requires fanout/radix  != terminal.
21 Sub-block links layout. If there exist links, are they all stored in a single array 

(consolidate) or spread at a per partition level (scatter). consolidate | scatter 2
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Rules: requires immediate node links != none or skip links != none.
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n 22 Recursion allowed.  If set to yes, sub-blocks will be subsequently inserted into a 
node of the same type until a maximum depth (expressed as a function) is 
reached. Then the terminal node type of this data structure will be used.

yes(func)  | no 3
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Rules: requires fanout/radix != terminal.
Total number of property combinations > 10^18 / 60 invalid combinations ≈ 10^16

Node descriptions: H : Hash, LL: Linked List, LPL: Linked Page-List, UDP: Unordered Data Page, B+: B+Tree Internal Node
CSB+: CSB+Tree Internal Node, FAST: FAST Internal node, ODP: Ordered Data Page (Nodes highlighted with gray are terminal leaf nodes)
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ABSTRACT

Data systems make extensive use of high-performance con-
tainer data structures to store large collections of base and
intermediate data, and to provide auxiliary structures such
as indexes and fast lookup tables. Because of their central
role in data system architectures, container structures need
to be closely tuned to both the underlying hardware and
workload. Consequently, over the last five decades, hundreds
of specialized container designs have been proposed and
novel applications demand new designs to achieve optimal
performance. While essential, high-performance container
structures are notoriously difficult to write and typically
consist of hundreds of lines of hand-tuned non-trivial code.
This not only makes the code hard to maintain and debug,
but also prevents data structure and system designers from
quickly iterating between alternative designs.

We present a new programming model for container data
structures that separates container definitions into a struc-
tural specification, a physical layout component and a set of
functional feature descriptions. We demonstrate the power of
this separation by introducing a declarative domain specific
language for container data structures, called TIGRIS, and
by describing an optimizing compiler that compiles TIGRIS
specifications to highly-efficient container implementations.
TIGRIS specifications are orders of magnitude shorter than
implementations written in traditional systems languages like
C, while being retargetable across platforms and allowing
for sophisticated automatic optimization and tuning. We
present initial results that indicate that TIGRIS can express
a large variety of traditional and special-purpose container
data structures in a concise manner, without sacrificing per-
formance. We also show how concise descriptions and the
reuse of optimizations can facilitate rapid exploration of the
container design space.

1. INTRODUCTION

Containers in Data Systems. Data-intensive programs, from
simple batch-processing scripts to highly complex database

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.
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Figure 1. Publications in major database conferences refer-
encing indexes, trees or access methods in their title (as
registered in the DBPL [8]). The total number of matching
publication found was 806 at the time of writing.

systems, heavily rely on high-performance container data
structure implementations data structures for efficient data
storage and retrieval. Those containers organize data objects
according to specific access rules that allow optimal read and
update behavior for their respective use case. that match
the application. Generally, containers are used to store two
categories of data. Base data is commonly stored in lists
of tuples or dictionaries, or any variations thereof such as
paged collections and column-major layouts (i.e., tuples of
collections). Especially in smaller programs, data is often
fully loaded into memory and the program is directly oper-
ating on top of the data collection. Contrary, While some
programs would store all their data in dictionaries, complex
data system use containers not only to store base data but
also auxiliary data that aids data processing. Prominent con-
tainer structures in such systems include , such as primary
and secondary indexes, intermediate data collections created
during query processing, and meta-data collections such as
page-to-frame mappings in the buffer pool and fast lookup
tables for query processing and data encoding.
Modern data systems use a large variety of containers

for different purposes. Linked-lists, arrays and vectors of
different forms are commonly used to store intermediate re-
sults between data processing stages, while fast membership
queries can be quickly answered using compact bit-vectors
and Bloom filters. Hash tables, and ordered tree structures
such as the omni-present B-tree are used to provide effi-
cient data access for both point and range queries, and over
the last decades many optimizations and specializations to
those structures have been proposed, including compression,
caching and algorithmical optimizations. Hash tables and
tree structures also provide the foundation of many data

~5K since the dawn of CS
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tainer data structures to store large collections of base and
intermediate data, and to provide auxiliary structures such
as indexes and fast lookup tables. Because of their central
role in data system architectures, container structures need
to be closely tuned to both the underlying hardware and
workload. Consequently, over the last five decades, hundreds
of specialized container designs have been proposed and
novel applications demand new designs to achieve optimal
performance. While essential, high-performance container
structures are notoriously difficult to write and typically
consist of hundreds of lines of hand-tuned non-trivial code.
This not only makes the code hard to maintain and debug,
but also prevents data structure and system designers from
quickly iterating between alternative designs.

We present a new programming model for container data
structures that separates container definitions into a struc-
tural specification, a physical layout component and a set of
functional feature descriptions. We demonstrate the power of
this separation by introducing a declarative domain specific
language for container data structures, called TIGRIS, and
by describing an optimizing compiler that compiles TIGRIS
specifications to highly-efficient container implementations.
TIGRIS specifications are orders of magnitude shorter than
implementations written in traditional systems languages like
C, while being retargetable across platforms and allowing
for sophisticated automatic optimization and tuning. We
present initial results that indicate that TIGRIS can express
a large variety of traditional and special-purpose container
data structures in a concise manner, without sacrificing per-
formance. We also show how concise descriptions and the
reuse of optimizations can facilitate rapid exploration of the
container design space.

1. INTRODUCTION

Containers in Data Systems. Data-intensive programs, from
simple batch-processing scripts to highly complex database
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systems, heavily rely on high-performance container data
structure implementations data structures for efficient data
storage and retrieval. Those containers organize data objects
according to specific access rules that allow optimal read and
update behavior for their respective use case. that match
the application. Generally, containers are used to store two
categories of data. Base data is commonly stored in lists
of tuples or dictionaries, or any variations thereof such as
paged collections and column-major layouts (i.e., tuples of
collections). Especially in smaller programs, data is often
fully loaded into memory and the program is directly oper-
ating on top of the data collection. Contrary, While some
programs would store all their data in dictionaries, complex
data system use containers not only to store base data but
also auxiliary data that aids data processing. Prominent con-
tainer structures in such systems include , such as primary
and secondary indexes, intermediate data collections created
during query processing, and meta-data collections such as
page-to-frame mappings in the buffer pool and fast lookup
tables for query processing and data encoding.
Modern data systems use a large variety of containers

for different purposes. Linked-lists, arrays and vectors of
different forms are commonly used to store intermediate re-
sults between data processing stages, while fast membership
queries can be quickly answered using compact bit-vectors
and Bloom filters. Hash tables, and ordered tree structures
such as the omni-present B-tree are used to provide effi-
cient data access for both point and range queries, and over
the last decades many optimizations and specializations to
those structures have been proposed, including compression,
caching and algorithmical optimizations. Hash tables and
tree structures also provide the foundation of many data
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Understanding the KV design space
in more detail: size ratio and merging 
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Readings for this week (and systems project)

The Log-Structured Merge-Bush & the Wacky Continuum. Niv Dayan, Stratos Idreos. In 
Proceedings of the ACM SIGMOD International Conference on Management of Data, 2019 

Dostoevsky: Better Space-Time Trade-Offs for LSM-Tree Based Key-Value Stores via 
Adaptive Removal of Superfluous Merging. Niv Dayan, Stratos Idreos. In Proceedings of 
the ACM SIGMOD International Conference on Management of Data, 2018 

Monkey: Optimal Navigable Key-Value Store. Niv Dayan, Manos 
Athanassoulis, Stratos Idreos. In Proceedings of the ACM SIGMOD 
International Conference on Management of Data, 2017 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