
Stratos Idreos

Labs start next week

Three times a week. (schedule on class website).

Labs are for systems projects only. Research projects will have diff sessions.

Logistics:
Class forum (Ed): this weekend

Labs start next week

Three times a week. (schedule on class website).

Labs are for systems projects only. Research projects will have diff sessions.

Systems projects can start as of next week
Step 1: Go to labs to start to understand what is needed and how to start.

TFs will also release two intro sections next week

Logistics:
Class forum (Ed): this weekend

Logistics on NN Systems Project
Second MLsys systems project ready.
Optimize data movement for neural network training

One vision and one LLM model.

Implementing M2 paper.

Available on the class website.

μ-TWO: 3x Faster Multi-model Training with Orchestration
and Memory Optimization

“Can I propose an idea for a research
project?”
Absolutely. If it fits the following questions:

Making SQL,NoSQL, LLMs, Image AI:

faster, understanding design space, adding design automation

What do we want to achieve: what if design example

workload

h/w

layout

design

workload

h/w

layout

design

performance
algorithms

without coding or

accessing the h/w

workload

h/w

layout

design

performance
algorithms

without coding or

accessing the h/w

workload

h/w

layout

design

performance
algorithms

what-if design

without coding or

accessing the h/w

workload

h/w

layout

design

performance
algorithms

what-if design

What if I add bloom

filters to my B-tree?

without coding or

accessing the h/w

workload

h/w

layout

design

performance
algorithms

what-if design

What if I add feature X that

brings 60% more writes?

What if I add bloom

filters to my B-tree?

without coding or

accessing the h/w

workload

h/w

layout

design

performance
algorithms

what-if design
What if I need to reduce

memory by 50%?

What if add feature X that

brings 60% more writes?

What if I add bloom

filters to my B-tree?

without coding or

accessing the h/w

workload

h/w

layout

design

performance
algorithms

what-if design
What if I need to reduce

memory by 50%?

Cost in Amazon
Cloud?

Which workload
breaks my system?

Should I buy new
hardware X?

What if add feature X that

brings 60% more writes?

What if I add bloom

filters to my B-tree?

DESIGN SPACE COST SYNTHESIS
 WHAT-IF

Three steps required

Today:

Building a design space in detail: Data structures

Next level of technical detail in KV-stores: merging/levels

DISK
MEMORY

insert (key-value)

buffer

DISK
MEMORY

DISK
MEMORY

 Level 1

DISK
MEMORY

 Level 1

insert (key-value)

buffer

DISK
MEMORY

 Level 1

DISK
MEMORY

 Level 1

DISK
MEMORY

 Level 1

insert (key-value)

buffer

DISK
MEMORY

 Level 2

DISK
MEMORY

 Level 2

 Level 1

buffer

 Level 2

 Level N

…

DISK
MEMORY

insert (key-value)

 Level 3

 Level 1

leveled
tiered

sorted

buffer

 Level 2

 Level N

…

DISK
MEMORY

insert (key-value)

 Level 3

 Level 1

leveled
tiered

sorted

buffer

 Level 2

 Level N

…

DISK
MEMORY

insert (key-value)

SSTables

pages

 Level 3

 Level 1

leveled
tiered

sorted

buffer

 Level 2

 Level N

…

DISK
MEMORY

SSTables

pages

 Level 3

bloom

filters

…

[1,0,0,1,1,1]

hash fun.

fence

pointers

[min-max]

…

/page

 Level 1

leveled
tiered

sorted

buffer

 Level 2

 Level N

…

DISK
MEMORY

SSTables

pages

 Level 3

bloom

filters

…

[1,0,0,1,1,1]

hash fun.

fence

pointers

[min-max]

…

/page

get (key)

 Level 1

leveled
tiered

sorted

buffer

 Level 2

 Level N

…

DISK
MEMORY

SSTables

pages

 Level 3

bloom

filters

…

[1,0,0,1,1,1]

hash fun.

fence

pointers

[min-max]

…

/page

get (key)

 Level 1

leveled
tiered

sorted

buffer

 Level 2

 Level N

…

DISK
MEMORY

SSTables

pages

 Level 3

bloom

filters

…

[1,0,0,1,1,1]

hash fun.

fence

pointers

[min-max]

…

/page

get (key)

 Level 1

leveled
tiered

sorted

buffer

 Level 2

 Level N

…

DISK
MEMORY

SSTables

pages

 Level 3

bloom

filters

…

[1,0,0,1,1,1]

hash fun.

fence

pointers

[min-max]

…

/page

get (key)

 Level 1

leveled
tiered

sorted

buffer

 Level 2

 Level N

…

DISK
MEMORY

SSTables

pages

 Level 3

bloom

filters

…

[1,0,0,1,1,1]

hash fun.

fence

pointers

[min-max]

…

/page

get (key)

 Level 1

leveled
tiered

sorted

buffer

 Level 2

 Level N

…

DISK
MEMORY

SSTables

pages

 Level 3

bloom

filters

…

[1,0,0,1,1,1]

hash fun.

fence

pointers

[min-max]

…

/page

get (key)

 Level 1

leveled
tiered

sorted

buffer

 Level 2

 Level N

…

DISK
MEMORY

SSTables

pages

 Level 3

bloom

filters

…

[1,0,0,1,1,1]

hash fun.

fence

pointers

[min-max]

…

/page

 Level 1

leveled
tiered

sorted

buffer

 Level 2

 Level N

…

DISK
MEMORY

SSTables

pages

 Level 3

bloom

filters

…

[1,0,0,1,1,1]

hash fun.

fence

pointers

[min-max]

…

/page

 Level 1

leveled
tiered

sorted

buffer

 Level 2

 Level N

…

DISK
MEMORY

SSTables

pages

 Level 3

bloom

filters

…

[1,0,0,1,1,1]

hash fun.

fence

pointers

[min-max]

…

/page

 Level 1

size ratio
merge policy

filters bits per entry

size of buffer/cache

internal k-v layout

size ratio
merge policy

filters bits per entry

size of buffer/cache

internal k-v layout

DOMAIN?
size ratio

merge policy
filters bits per entry

size of buffer/cache

internal k-v layout

DOMAIN? AMPLIFICATION?
M

em
ory

Re
ad

Up
da

te

size ratio
merge policy

filters bits per entry

size of buffer/cache

internal k-v layout

LSM-trees
size ratio

merge policy
filters bits per entry

size of buffer/cache

internal k-v layout

LSM-trees
B-trees

Arrays
Logs

Bitmaps

size ratio
merge policy

filters bits per entry

size of buffer/cache

internal k-v layout
key retention

value retention
partitioning

sub-block links

fanout

key-value

@SIGMOD18

size ratio
merge policy

filters bits per entry

size of buffer/cache

internal k-v layout

key retention
value retention

partitioning

sub-block links

fanout

key-value

@SIGMOD18

size ratio
merge policy

filters bits per entry

size of buffer/cache

internal k-v layout

key retention
value retention

partitioning

sub-block links

fanout

unified
design
space

key-value

@SIGMOD18

size ratio
merge policy

filters bits per entry

size of buffer/cache

internal k-v layout

key retention
value retention

partitioning

sub-block links

fanout

unified
design
space

key-value

@SIGMOD18

size ratio
merge policy

filters bits per entry

size of buffer/cache

internal k-v layout

key retention
value retention

partitioning

sub-block links

fanout

unified
design
space

sorted

zone map
bloom

filter bits

link

children
layout

no key retention

no value retention
utilization

50%

sorted

bloom

filters off

@SIGMOD18

sorted

zone map
bloom

filter bits

link

children
layout

no
no

s

POSSIBLE NODE DESIGNS

POSSIBLE STRUCTURES

@SIGMOD18

sorted

zone map
bloom

filter bits

link

children
layout

no
no

s

POSSIBLE NODE DESIGNS

POSSIBLE STRUCTURES

@SIGMOD18

sorted

zone map
bloom

filter bits

link

children
layout

no
no

s

Array

Linked-List
Skip-ListTrie

Hash-Table

Sorted Array

Unknown 1

Unknown 2
Unknown N

POSSIBLE NODE DESIGNS

Are keys retained? (yes, no, function)
Are values retained?
Utilization? (e.g., >50%)

Are keys retained? (yes, no, function)
Are values retained?
Utilization? (e.g., >50%)

Key partitioning (none(fw-append | bw-append) | sorted | range() | radix() | function (func) | temporal(…))

Fanout (fixed/functional | unlimited | terminal |)

Are keys retained? (yes, no, function)
Are values retained?
Utilization? (e.g., >50%)

Key partitioning (none(fw-append | bw-append) | sorted | range() | radix() | function (func) | temporal(…))

Fanout (fixed/functional | unlimited | terminal |)

Intra node access (direct | head_link | tail_link | link_function(func))

Are keys retained? (yes, no, function)
Are values retained?
Utilization? (e.g., >50%)

Key partitioning (none(fw-append | bw-append) | sorted | range() | radix() | function (func) | temporal(…))

Fanout (fixed/functional | unlimited | terminal |)

Intra node access (direct | head_link | tail_link | link_function(func))

Sub block links (next | previous | both | none)

Sub block skip links (perfect | randomized(prob: double) | function(func) | none)

Are keys retained? (yes, no, function)
Are values retained?
Utilization? (e.g., >50%)

Key partitioning (none(fw-append | bw-append) | sorted | range() | radix() | function (func) | temporal(…))

Fanout (fixed/functional | unlimited | terminal |)

Intra node access (direct | head_link | tail_link | link_function(func))

Sub block links (next | previous | both | none)

Sub block skip links (perfect | randomized(prob: double) | function(func) | none)

Zone Maps (min | max | both | exact | off)

Bloom filters (off | on(num_hashes: int, num_bits: int))

Filters layout (consolidate | scatter)

Links layout (consolidate | scatter)

Are keys retained? (yes, no, function)
Are values retained?
Utilization? (e.g., >50%)

Key partitioning (none(fw-append | bw-append) | sorted | range() | radix() | function (func) | temporal(…))

Fanout (fixed/functional | unlimited | terminal |)

Intra node access (direct | head_link | tail_link | link_function(func))

Sub block links (next | previous | both | none)

Sub block skip links (perfect | randomized(prob: double) | function(func) | none)

Zone Maps (min | max | both | exact | off)

Bloom filters (off | on(num_hashes: int, num_bits: int))

Physical location (inline | pointed | double- pointed)
Physical layout (BFS | scatter)

Filters layout (consolidate | scatter)

Links layout (consolidate | scatter)

UNORDERED

ARRAY

UNORDERED

LIST OF

ARRAYS

UNORDERED

ARRAY

B+Tree

 C
at

eg
or

ie
s

 Primitives and Instances
Unless otherwise specified, we use a

reduced default values domain of
100 values for integers, 10 values for

doubles, and 1 value for functions.

Hash Table B+Tree/CSB+Tree/FAST
LPL

Primitive Domain size H LL UDP B+ CSB+ FAST ODP

N
od

e
or

ga
ni

za
tio

n

1 Key retention. No: node contains no real key data, e.g., intermediate nodes of
b+trees and linked lists. Yes: contains complete key data, e.g., nodes of b-trees,
and arrays. Function: contains only a subset of the key, i.e., as in tries.

yes | no | function(func) 3

no no yes no no no yes
2 Value retention. No: node contains no real value data, e.g., intermediate nodes

of b+trees, and linked lists. Yes: contains complete value data, e.g., nodes of b-
trees, and arrays. Function: contains only a subset of the values.

yes | no | function(func) 3

no no yes no no no yes
3 Key order. Determines the order of keys in a node or the order of fences if real

keys are not retained.
none | sorted | k-ary (k: int) 12

none none none sorted sorted 4-ary sorted
4 Key-value layout. Determines the physical layout of key-value pairs. row-wise | columnar | col-row-

groups(size: int) 12 co
l.

co
l.

Rules: requires key retention != no or value retention != no.
5 Intra-node access. Determines how sub-blocks (one or more keys of this node)

can be addressed and retrieved within a node, e.g., with direct links, a link only
to the first or last block, etc.

direct | head_link | tail_link |
link_function(func) 4

di
re

ct

he
ad

di
re

ct

di
re

ct

di
re

ct

di
re

ct

di
re

ct

6 Utilization. Utilization constraints in regards to capacity. For example, >= 50%
denotes that utilization has to be greater than or equal to half the capacity.

 >= (X%) | function(func) | none
(we currently only consider X=50) 3

none none none
>=

50%
>=

50%
>=

50% none

N
od

e
fil

te
rs

7 Bloom filters. A node's sub-block can be filtered using bloom filters. Bloom
filters get as parameters the number of hash functions and number of bits.

off | on(num_hashes: int,
num_bits: int)
(up to 10 num_hashes considered) 10

01

off off off off off off off
8 Zone map filters. A node's sub-block can be filitered using zone maps, e.g., they

can filter based on mix/max keys in each sub-block.
min | max | both | exact | off 5

off off off min min min off
9 Filters memory layout. Filters are stored contiguously in a single area of the

node or scattered across the sub-blocks. consolidate | scatter 2

sc
at

te
r

sc
at

te
r

sc
at

te
r

Rules: requires bloom filter != off or zone map filters != off.

Pa
rt

iti
on

in
g

10 Fanout/Radix. Fanout of current node in terms of sub-blocks. This can either be
unlimited (i.e., no restriction on the number of sub-blocks), fixed to a number,
decided by a function or the node is terminal and thus has a fixed capacity.

fixed(value: int) | function(func)
| unlimited | terminal(cap: int)

(up to 10 different capacities and up
to 10 fixed fanout values are

considered)

22

fix
ed

(1
00

)

un
lim

ite
d

te
rm

(2
56

)

fix
ed

(2
0)

fix
ed

(2
0)

fix
ed

(1
6)

te
rm

(2
56

)

11 Key partitioning. Set if there is a pre-defined key partitioning imposed. e.g. the
sub-block where a key is located can be dictated by a radix or range partitioning
function. Alternatively, keys can be temporaly partitioned. If partitioning is set to
none, then keys can be forward or backwards appended.

none(fw-append | bw-append)
| range() | radix() | function
(func) | temporal(size_ratio:

int, merge_policy: [tier| level])

205

ra
ng

e(
10

0)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

12 Sub-block capacity. Capacity of each sub-block. It can either be fixed to a value,
or balanced (i.e., all sub-blocks have the same size), unrestricted or functional.

fixed(value: int) | balanced |
unrestricted | function(func)

(up to 10 different fixed capacity
values are considered)

13

un
re

st
ric

t.

fix
ed

(2
56

)

ba
la

nc
ed

ba
la

nc
ed

ba
la

nc
ed

Rules: requires key partitioning != none.
13 Immediate node links. Whether and how sub-blocks are connected. next | previous | both | none 4 none next none none none none none
14 Skip node links. Each sub-block can be connected to another sub-block (not only

the next or previous) with skip-links. They can be perfect, randomized or
custom.

 perfect | randomized(prob:
double) | function(func) | none 13 none none none none none none none

15 Area-links. Each sub-tree can be connected with another sub-tree at the leaf
level throu area links. Examples include the linked leaves of a B+Tree.

forward | backward | both |
none 4 none none forw. none none none none

Ch
ild

re
n

la
yo

ut

16 Sub-block physical location. This represents the physical location of
the sub-blocks. Pointed: in heap, Inline: block physically contained in parent.
Double-pointed: in heap but with pointers back to the parent.

inline | pointed | double-
pointed 3

po
in

te
d

in
lin

e

po
in

te
d

po
in

te
d

po
in

te
d

Rules: requires fanout/radix != terminal.
17 Sub-block physical layout. This represents the physical layout of sub-blocks.

Scatter: random placement in memory. BFS: laid out in a breadth-first layout.
BFS layer list: hierarchical level nesting of BFS layouts.

BFS | BFS layer(level-grouping:
int) | scatter

(up to 3 different values for layer-
grouping are considered)

5

sc
at

te
r

sc
at

te
r

sc
at

te
r

BF
S

BF
S-

LL
Rules: requires fanout/radix != terminal.

18 Sub-blocks homogeneous. Set to true if all sub-blocks are of the same type.
boolean 2

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

Rules: requires fanout/radix != terminal.
19 Sub-block consolidation. Single children are merged with their parents.

boolean 2

fa
lse

fa
lse

fa
lse

fa
lse

fa
lse

Rules: requires fanout/radix != terminal.
20 Sub-block instantiation. If it is set to eager, all sub-blocks are initialized,

otherwise they are initialized only when data are available (lazy). lazy | eager 2 la
zy

la
zy

la
zy

la
zy

la
zy

Rules: requires fanout/radix != terminal.
21 Sub-block links layout. If there exist links, are they all stored in a single array

(consolidate) or spread at a per partition level (scatter). consolidate | scatter 2

sc
at

te
r

Rules: requires immediate node links != none or skip links != none.

Re
cu

rs
io

n 22 Recursion allowed. If set to yes, sub-blocks will be subsequently inserted into a
node of the same type until a maximum depth (expressed as a function) is
reached. Then the terminal node type of this data structure will be used.

yes(func) | no 3

no no ye
s(

lo
gn

)

ye
s(

lo
gn

)

ye
s(

lo
gn

)

Rules: requires fanout/radix != terminal.
Total number of property combinations > 10^18 / 60 invalid combinations ≈ 10^16

Node descriptions: H : Hash, LL: Linked List, LPL: Linked Page-List, UDP: Unordered Data Page, B+: B+Tree Internal Node
CSB+: CSB+Tree Internal Node, FAST: FAST Internal node, ODP: Ordered Data Page (Nodes highlighted with gray are terminal leaf nodes)

 C
at

eg
or

ie
s

Unless otherwise specified, we use a
reduced default values domain of

100 values for integers, 10 values for
doubles, and 1 value for functions.

Hash Table B+Tree/CSB+Tree/FAST
LPL

Primitive Domain size H LL UDP B+ CSB+ FAST ODP

N
od

e
or

ga
ni

za
tio

n

1 Key retention. No: node contains no real key data, e.g., intermediate nodes of
b+trees and linked lists. Yes: contains complete key data, e.g., nodes of b-trees,
and arrays. Function: contains only a subset of the key, i.e., as in tries.

yes | no | function(func) 3

no no yes no no no yes
2 Value retention. No: node contains no real value data, e.g., intermediate nodes

of b+trees, and linked lists. Yes: contains complete value data, e.g., nodes of b-
trees, and arrays. Function: contains only a subset of the values.

yes | no | function(func) 3

no no yes no no no yes
3 Key order. Determines the order of keys in a node or the order of fences if real

keys are not retained.
none | sorted | k-ary (k: int) 12

none none none sorted sorted 4-ary sorted
4 Key-value layout. Determines the physical layout of key-value pairs. row-wise | columnar | col-row-

groups(size: int) 12 co
l.

co
l.

Rules: requires key retention != no or value retention != no.
5 Intra-node access. Determines how sub-blocks (one or more keys of this node)

can be addressed and retrieved within a node, e.g., with direct links, a link only
to the first or last block, etc.

direct | head_link | tail_link |
link_function(func) 4

di
re

ct

he
ad

di
re

ct

di
re

ct

di
re

ct

di
re

ct

di
re

ct

6 Utilization. Utilization constraints in regards to capacity. For example, >= 50%
denotes that utilization has to be greater than or equal to half the capacity.

 >= (X%) | function(func) | none
(we currently only consider X=50) 3

none none none
>=

50%
>=

50%
>=

50% none

N
od

e
fil

te
rs

7 Bloom filters. A node's sub-block can be filtered using bloom filters. Bloom
filters get as parameters the number of hash functions and number of bits.

off | on(num_hashes: int,
num_bits: int)
(up to 10 num_hashes considered) 10

01

off off off off off off off
8 Zone map filters. A node's sub-block can be filitered using zone maps, e.g., they

can filter based on mix/max keys in each sub-block.
min | max | both | exact | off 5

off off off min min min off
9 Filters memory layout. Filters are stored contiguously in a single area of the

node or scattered across the sub-blocks. consolidate | scatter 2

sc
at

te
r

sc
at

te
r

sc
at

te
r

Rules: requires bloom filter != off or zone map filters != off.

Pa
rt

iti
on

in
g

10 Fanout/Radix. Fanout of current node in terms of sub-blocks. This can either be
unlimited (i.e., no restriction on the number of sub-blocks), fixed to a number,
decided by a function or the node is terminal and thus has a fixed capacity.

fixed(value: int) | function(func)
| unlimited | terminal(cap: int)

(up to 10 different capacities and up
to 10 fixed fanout values are

considered)

22

fix
ed

(1
00

)

un
lim

ite
d

te
rm

(2
56

)

fix
ed

(2
0)

fix
ed

(2
0)

fix
ed

(1
6)

te
rm

(2
56

)

11 Key partitioning. Set if there is a pre-defined key partitioning imposed. e.g. the
sub-block where a key is located can be dictated by a radix or range partitioning
function. Alternatively, keys can be temporaly partitioned. If partitioning is set to
none, then keys can be forward or backwards appended.

none(fw-append | bw-append)
| range() | radix() | function
(func) | temporal(size_ratio:

int, merge_policy: [tier| level])

205

ra
ng

e(
10

0)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

12 Sub-block capacity. Capacity of each sub-block. It can either be fixed to a value,
or balanced (i.e., all sub-blocks have the same size), unrestricted or functional.

fixed(value: int) | balanced |
unrestricted | function(func)

(up to 10 different fixed capacity
values are considered)

13

un
re

st
ric

t.

fix
ed

(2
56

)

ba
la

nc
ed

ba
la

nc
ed

ba
la

nc
ed

Rules: requires key partitioning != none.
13 Immediate node links. Whether and how sub-blocks are connected. next | previous | both | none 4 none next none none none none none
14 Skip node links. Each sub-block can be connected to another sub-block (not only

the next or previous) with skip-links. They can be perfect, randomized or
custom.

 perfect | randomized(prob:
double) | function(func) | none 13 none none none none none none none

15 Area-links. Each sub-tree can be connected with another sub-tree at the leaf
level throu area links. Examples include the linked leaves of a B+Tree.

forward | backward | both |
none 4 none none forw. none none none none

Ch
ild

re
n

la
yo

ut

16 Sub-block physical location. This represents the physical location of
the sub-blocks. Pointed: in heap, Inline: block physically contained in parent.
Double-pointed: in heap but with pointers back to the parent.

inline | pointed | double-
pointed 3

po
in

te
d

in
lin

e

po
in

te
d

po
in

te
d

po
in

te
d

Rules: requires fanout/radix != terminal.
17 Sub-block physical layout. This represents the physical layout of sub-blocks.

Scatter: random placement in memory. BFS: laid out in a breadth-first layout.
BFS layer list: hierarchical level nesting of BFS layouts.

BFS | BFS layer(level-grouping:
int) | scatter

(up to 3 different values for layer-
grouping are considered)

5

sc
at

te
r

sc
at

te
r

sc
at

te
r

BF
S

BF
S-

LL

Rules: requires fanout/radix != terminal.
18 Sub-blocks homogeneous. Set to true if all sub-blocks are of the same type.

boolean 2

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

Rules: requires fanout/radix != terminal.
19 Sub-block consolidation. Single children are merged with their parents.

boolean 2

fa
lse

fa
lse

fa
lse

fa
lse

fa
lse

Rules: requires fanout/radix != terminal.
20 Sub-block instantiation. If it is set to eager, all sub-blocks are initialized,

otherwise they are initialized only when data are available (lazy). lazy | eager 2 la
zy

la
zy

la
zy

la
zy

la
zy

Rules: requires fanout/radix != terminal.
21 Sub-block links layout. If there exist links, are they all stored in a single array

(consolidate) or spread at a per partition level (scatter). consolidate | scatter 2

sc
at

te
r

Rules: requires immediate node links != none or skip links != none.

Re
cu

rs
io

n 22 Recursion allowed. If set to yes, sub-blocks will be subsequently inserted into a
node of the same type until a maximum depth (expressed as a function) is
reached. Then the terminal node type of this data structure will be used.

yes(func) | no 3

no no ye
s(

lo
gn

)

ye
s(

lo
gn

)

ye
s(

lo
gn

)

Rules: requires fanout/radix != terminal.
Total number of property combinations > 10^18 / 60 invalid combinations ≈ 10^16

Node descriptions: H : Hash, LL: Linked List, LPL: Linked Page-List, UDP: Unordered Data Page, B+: B+Tree Internal Node
CSB+: CSB+Tree Internal Node, FAST: FAST Internal node, ODP: Ordered Data Page (Nodes highlighted with gray are terminal leaf nodes)

STARS IN THE SKY POSSIBLE DATA STRUCTURES

10^24

10^32, 2-node
10^48, 3-node

STARS IN THE SKY POSSIBLE DATA STRUCTURES

10^24

10^32, 2-node
10^48, 3-node

The TIGRIS Container Description Language and Compiler

Lukas M.Maas
Harvard University

maas@seas.harvard.edu

Stratos Idreos
Harvard University

stratos@seas.harvard.edu

ABSTRACT

Data systems make extensive use of high-performance con-
tainer data structures to store large collections of base and
intermediate data, and to provide auxiliary structures such
as indexes and fast lookup tables. Because of their central
role in data system architectures, container structures need
to be closely tuned to both the underlying hardware and
workload. Consequently, over the last five decades, hundreds
of specialized container designs have been proposed and
novel applications demand new designs to achieve optimal
performance. While essential, high-performance container
structures are notoriously difficult to write and typically
consist of hundreds of lines of hand-tuned non-trivial code.
This not only makes the code hard to maintain and debug,
but also prevents data structure and system designers from
quickly iterating between alternative designs.

We present a new programming model for container data
structures that separates container definitions into a struc-
tural specification, a physical layout component and a set of
functional feature descriptions. We demonstrate the power of
this separation by introducing a declarative domain specific
language for container data structures, called TIGRIS, and
by describing an optimizing compiler that compiles TIGRIS
specifications to highly-efficient container implementations.
TIGRIS specifications are orders of magnitude shorter than
implementations written in traditional systems languages like
C, while being retargetable across platforms and allowing
for sophisticated automatic optimization and tuning. We
present initial results that indicate that TIGRIS can express
a large variety of traditional and special-purpose container
data structures in a concise manner, without sacrificing per-
formance. We also show how concise descriptions and the
reuse of optimizations can facilitate rapid exploration of the
container design space.

1. INTRODUCTION

Containers in Data Systems. Data-intensive programs, from
simple batch-processing scripts to highly complex database

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

SIGMOD
VLDB
ICDE
EDBT

Conference

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

0
5
10
15
20
25
30
35
40
45
50

N
um

be
r o

f p
ub

lic
at

io
ns

Figure 1. Publications in major database conferences refer-
encing indexes, trees or access methods in their title (as
registered in the DBPL [8]). The total number of matching
publication found was 806 at the time of writing.

systems, heavily rely on high-performance container data
structure implementations data structures for efficient data
storage and retrieval. Those containers organize data objects
according to specific access rules that allow optimal read and
update behavior for their respective use case. that match
the application. Generally, containers are used to store two
categories of data. Base data is commonly stored in lists
of tuples or dictionaries, or any variations thereof such as
paged collections and column-major layouts (i.e., tuples of
collections). Especially in smaller programs, data is often
fully loaded into memory and the program is directly oper-
ating on top of the data collection. Contrary, While some
programs would store all their data in dictionaries, complex
data system use containers not only to store base data but
also auxiliary data that aids data processing. Prominent con-
tainer structures in such systems include , such as primary
and secondary indexes, intermediate data collections created
during query processing, and meta-data collections such as
page-to-frame mappings in the buffer pool and fast lookup
tables for query processing and data encoding.
Modern data systems use a large variety of containers

for different purposes. Linked-lists, arrays and vectors of
different forms are commonly used to store intermediate re-
sults between data processing stages, while fast membership
queries can be quickly answered using compact bit-vectors
and Bloom filters. Hash tables, and ordered tree structures
such as the omni-present B-tree are used to provide effi-
cient data access for both point and range queries, and over
the last decades many optimizations and specializations to
those structures have been proposed, including compression,
caching and algorithmical optimizations. Hash tables and
tree structures also provide the foundation of many data

~5K since the dawn of CS

STARS IN THE SKY POSSIBLE DATA STRUCTURES

10^24

10^32, 2-node
10^48, 3-node

The TIGRIS Container Description Language and Compiler

Lukas M.Maas
Harvard University

maas@seas.harvard.edu

Stratos Idreos
Harvard University

stratos@seas.harvard.edu

ABSTRACT

Data systems make extensive use of high-performance con-
tainer data structures to store large collections of base and
intermediate data, and to provide auxiliary structures such
as indexes and fast lookup tables. Because of their central
role in data system architectures, container structures need
to be closely tuned to both the underlying hardware and
workload. Consequently, over the last five decades, hundreds
of specialized container designs have been proposed and
novel applications demand new designs to achieve optimal
performance. While essential, high-performance container
structures are notoriously difficult to write and typically
consist of hundreds of lines of hand-tuned non-trivial code.
This not only makes the code hard to maintain and debug,
but also prevents data structure and system designers from
quickly iterating between alternative designs.

We present a new programming model for container data
structures that separates container definitions into a struc-
tural specification, a physical layout component and a set of
functional feature descriptions. We demonstrate the power of
this separation by introducing a declarative domain specific
language for container data structures, called TIGRIS, and
by describing an optimizing compiler that compiles TIGRIS
specifications to highly-efficient container implementations.
TIGRIS specifications are orders of magnitude shorter than
implementations written in traditional systems languages like
C, while being retargetable across platforms and allowing
for sophisticated automatic optimization and tuning. We
present initial results that indicate that TIGRIS can express
a large variety of traditional and special-purpose container
data structures in a concise manner, without sacrificing per-
formance. We also show how concise descriptions and the
reuse of optimizations can facilitate rapid exploration of the
container design space.

1. INTRODUCTION

Containers in Data Systems. Data-intensive programs, from
simple batch-processing scripts to highly complex database

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

SIGMOD
VLDB
ICDE
EDBT

Conference

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

0
5
10
15
20
25
30
35
40
45
50

N
um

be
r o

f p
ub

lic
at

io
ns

Figure 1. Publications in major database conferences refer-
encing indexes, trees or access methods in their title (as
registered in the DBPL [8]). The total number of matching
publication found was 806 at the time of writing.

systems, heavily rely on high-performance container data
structure implementations data structures for efficient data
storage and retrieval. Those containers organize data objects
according to specific access rules that allow optimal read and
update behavior for their respective use case. that match
the application. Generally, containers are used to store two
categories of data. Base data is commonly stored in lists
of tuples or dictionaries, or any variations thereof such as
paged collections and column-major layouts (i.e., tuples of
collections). Especially in smaller programs, data is often
fully loaded into memory and the program is directly oper-
ating on top of the data collection. Contrary, While some
programs would store all their data in dictionaries, complex
data system use containers not only to store base data but
also auxiliary data that aids data processing. Prominent con-
tainer structures in such systems include , such as primary
and secondary indexes, intermediate data collections created
during query processing, and meta-data collections such as
page-to-frame mappings in the buffer pool and fast lookup
tables for query processing and data encoding.
Modern data systems use a large variety of containers

for different purposes. Linked-lists, arrays and vectors of
different forms are commonly used to store intermediate re-
sults between data processing stages, while fast membership
queries can be quickly answered using compact bit-vectors
and Bloom filters. Hash tables, and ordered tree structures
such as the omni-present B-tree are used to provide effi-
cient data access for both point and range queries, and over
the last decades many optimizations and specializations to
those structures have been proposed, including compression,
caching and algorithmical optimizations. Hash tables and
tree structures also provide the foundation of many data

~5K since the dawn of CS

1048-5x103 = 1048 zero progress?

PERIODIC TABLE OF ELEMENTS
explains and predicts missing elements
Dimitri Mentelev

structures elements based on atomic number,

electron configuration, and recurring chemical properties

Kosuke Morita

nihonium

periodic table of data structures
@IEEE.EngBul18

periodic table of data structures
@IEEE.EngBul18

periodic table of data structures
@IEEE.EngBul18

PAPER MACHINE

periodic table of data structures
@IEEE.EngBul18

PAPER MACHINE
updatable

bitmap indexes
@SIGMOD16

Mike Franklin

TAXONOMY OF COMPLEX ALGORITHMS
transactional cache consistency maintenance

“The taxonomy is used to shed light
both on the nature of the design space

and on the performance tradeoffs
implied by many of the choices that

exist in the design space.”

Mike Franklin

TAXONOMY OF COMPLEX ALGORITHMS
transactional cache consistency maintenance

“The taxonomy is used to shed light
both on the nature of the design space

and on the performance tradeoffs
implied by many of the choices that

exist in the design space.”

DON BATORY BARBARA LISKOV

leveled
tiered

sorted

buffer

 Level 2

 Level N

…

DISK
MEMORY

SSTables

pages

 Level 3

bloom

filters

…

[1,0,0,1,1,1]

hash fun.

fence

pointers

[min-max]

…

/page

 Level 1

Understanding the KV design space
in more detail: size ratio and merging

merging

writes reads

merging

writes reads

when we do more

merging

writes reads

when we do more

LevelingTiering
read-optimizedwrite-optimized

merging

LevelingTiering
write-optimized read-optimized

LevelingTiering

gather

write-optimized read-optimized

LevelingTiering

merge & flush

gather

write-optimized read-optimized

LevelingTiering
write-optimized read-optimized

gather

LevelingTiering

merge

write-optimized read-optimized

gather

LevelingTiering

merge

write-optimized read-optimized

gather

LevelingTiering

flush

merge

write-optimized read-optimized

gather

LevelingTiering

merge

write-optimized read-optimized

gather

LevelingTiering
write-optimized read-optimized

logR(N)

LevelingTiering

1 run per level
R runs per level

write-optimized read-optimized

size ratio

logR(N)

LevelingTiering

size ratio

logR(N)

1 run per level
R runs per level

write-optimized read-optimized

LevelingTiering

R runs per level

1 run per level

size ratio R

write-optimized read-optimized

1 run per level

LevelingTiering

1 run per level

size ratio R

write-optimized read-optimized

LevelingTiering

T runs per level

1 run per level

size ratio R

write-optimized read-optimized

1 run per level

LevelingTiering

O(lNl) runs per level

size ratio R

write-optimized read-optimized

1 run per level

LevelingTiering

log

O(lNl) runs per level

size ratio R

write-optimized read-optimized

1 run per level

LevelingTiering

log sorted
array

O(lNl) runs per level

size ratio R

write-optimized read-optimized

Tiering

Leveling

log

sorted

array

Tiering

Leveling

log

sorted

array

size ratio R

Tiering

Levelingsize ratio R

log

sorted

array

Tiering

Leveling

log

sorted

array

R

R

size ratio R

what happens
as we collect
more data?

what happens
as we collect
more data?

what happens
as we collect
more data?

both reads and writes get worse!

what happens
as we collect
more data?

what happens
as we collect
more data?

Dostoevsky

Monkey

Readings for this week (and systems project)

The Log-Structured Merge-Bush & the Wacky Continuum. Niv Dayan, Stratos Idreos. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, 2019

Dostoevsky: Better Space-Time Trade-Offs for LSM-Tree Based Key-Value Stores via
Adaptive Removal of Superfluous Merging. Niv Dayan, Stratos Idreos. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, 2018

Monkey: Optimal Navigable Key-Value Store. Niv Dayan, Manos
Athanassoulis, Stratos Idreos. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2017 

Stratos Idreos

