
NoSQL Systems Project
CS265 Spring 2025

Aims & Scope
• Designing and implementing a Log-Structured-Merge-tree,

i.e., LSM-tree, as a key-value store

• Designing a system

• C/C++ implementation

• Low-level systems issues

• Parallel processing, read/write trade-offs, etc.

• Main idea: Buffered writes at expense of reads

Run #1

Buffer
(L0)

Run #2 Run #N1

Run #1 Run #2 Run #N2

Run #1 Run #2 Run #N3

…

…

…

Main
Memory

Secondary
StorageL1

L2

LM

…

-Heap

-Skiplist

-Btree

Fast data
ingestion

Buffer
(L0)

Main
Memory

Run #1 Run #2 Run #N2…

File1 File2 File #F…

A set of sorted files with
non-overlapping key ranges

Run #1

Buffer
(L0)

Run #2 Run #N1…L1

1.Total level capacity

2.Number of runs per level

-If any exceeded: flush down

Buffer
(L0)

Main
Memory

Secondary
StorageRun #1L1

#run per level ths: 3

Buffer
(L0)

Main
Memory

Secondary
StorageRun #1L1 Run #2

#run per level ths: 3

Buffer
(L0)

Main
Memory

Secondary
StorageRun #1L1 Run #2 Run #3

#run per level ths: 3

Buffer
(L0)

Main
Memory

Secondary
StorageRun #1L1 Run #2 Run #3

Max #runs/level threshold reached!
Flush down!

#run per level ths: 3

Buffer
(L0)

Main
Memory

Secondary
StorageRun #1L1 Run #2 Run #3

Merge

Run #1L2
#run per level ths: 3

Buffer
(L0)

Main
Memory

Secondary
StorageL1

Run #1L2
#run per level ths: 3

Buffer
(L0)

Main
Memory

Secondary
StorageL1 Run #1

Run #1L2
#run per level ths: 3

Cascading merges

Buffer
(L0)

Main
Memory

Secondary
StorageL1

L2

LM

Bloom
filters

Fence
pointers

Balances look-up time

The Project
• Two parts

1. Designing the basic structure of an LSM tree for reads and writes

2. Same functionality in a parallel way so we can support multiple

concurrent reads and writes.

• Open ended; e.g.:
• Each level may be designed in its own way

• Each level may be a complex or simple data structure

• Tree vs. simple array

The Project
• Minimum design
• Align with Monkey or Dostoevsky paper

• Merge policies

• One bloom filter and fence pointer per level

• …

• Additional design considerations
• At least three optimizations: size ratio between levels, buffer

data structure, etc.

• See: http://daslab.seas.harvard.edu/classes/cs265/project.html

http://daslab.seas.harvard.edu/classes/cs265/project.html

Midway checkin
• Three deliverables

1. Design document, describing in detail the first phase of the
project

2. 45 minute presentation that describes the intended design for the
whole project

3. At least two performance experiments that demonstrate an
unoptimized variant of a get and a put operation.

Final deliverable
• Two deliverables

1. A code deliverable + code review + demo = 50%

2. A final paper and experimental analysis = 50%

• See for complete description & templates:
• http://daslab.seas.harvard.edu/classes/cs265/project.html

Toolchain
• C/C++
• Rust also fine

• Any compiler and IDE is fine
• VS Code is common

• OS: Linux, but Windows is also fine
• Client-server architecture & CS265 DSL

Experimental evaluation example
Performance graph Explanation graph

That’s all folks!

