1. Machine Learning
1.1 What is the problem?

→ Overwhelming zoo and complexity of ML algorithms / ML training

→ ML system separate from database system

→ Existing systems require background in distributed systems and algorithms
What are the key challenges for modern machine learning?
1.2 Key Challenges

→ scalability

→ parametrization and model selection

→ training

→ real-time / interactive responses
What differentiates a ML system from a traditional database system?
1.3 System design

→ Sampling as important operation
→ No need for complicated index structures
 → Joins, filtering and aggregation usually done before training
 → Raw data not updated during training / prediction
→ Scans & loops for training (stochastic gradient descent [SGD])
1.3 Stochastic Gradient Descent (SGD)

Objective function

\[Q(\theta) = \sum_{i=1}^{n} Q_i(\theta) \]

Gradient descent

\[\theta^{(k+1)} = \theta^{(k)} - \eta \sum_{i=1}^{n} \nabla Q_i(\theta) \]

Approximate gradient

\[\sum_{i=1}^{n} \nabla Q_i(\theta) \approx \frac{n}{|J|} \sum_{j \in J} \nabla Q_j(\theta) \]

(Standard) Algorithm:

- Choose an initial vector of parameters \(w \) and learning rate \(\eta \).
- Repeat until an approximate minimum is obtained:
 - Randomly shuffle examples in the training set.
 - For \(i = 1, 2, \ldots, n \), do:
 - \(w := w - \eta \nabla Q_i(w) \).
1.4 The solution

MLbase:

User specifies in a MLbase specific query:
- model
- data

MLbase optimizes over models and parameters

MLbase returns optimal model along with statistics to user

```plaintext
var X = load("als_clinical", 2 to 10)
var y = load("als_clinical", 1)
var (fn-model, summary) = doClassify(X, y)
```
1.5 Core solution

MLbase optimizes over models and parameters

Create logical learning plan (LLP) → Create and execute physical learning plan (PLP)

MLbase Runtime

ML Optimizer
MLI
MLlib
Apache Spark
1.6 Step by Step solution ideas of MLbase

- Do optimization only on 10% of data
- Each model can be trained separately
- Relax certain db assumptions
- Give user early results and continuously improve
1.7 Synchronous vs. asynchronous execution

→ Optimization routines do not require consistency
What design choices could we make to create a more ML friendly database system?
1.8 Ideas & next steps regarding MLbase

→ Implement system & design appropriate experiments
→ exchange Spark with other frameworks
→ add feature extraction to optimization routine
→ use globally collected statistics for parameter search
2. MapReduce
2.1 Statistical Query Model

ML requires computing statistical quantities (e.g. moments)

\[\sum_{x \in D} f(x) = f(x_1) + f(x_2) + \ldots \]
How to parallelize?
2.2 MapReduce = Map + Reduce?

\[\sum_{x \in D} f(x) = f(x_1) + f(x_2) + \ldots \]
2.2 MapReduce = Map + Reduce?

\[\sum_{x \in D} f(x) = f(x_1) + f(x_2) + \ldots \]
2.3 Result

Linear speedup (close to ideal)

e.g. PCA
Parallel programming solved?