welcome to CS265!

prof. Stratos Idreos

HTTP://DASLAB.SEAS.HARVARD.EDU/CLASSES/CS265/
big data

data systems

cs265 goals & logistics

when you see this speak up!

+you stop me any time for questions
it is all about research
learn to question everything
algorithm

step 1
step 2
step 3

...
understanding all possible steps (design space) and the potential impact is the basis of good science

(also otherwise our algorithms are a set of mostly ad hoc choices that look like a good option but without any formal reason)
method a

method b

a or b is best
what is the difference between a and b (in terms of design)?
3

round table discussion/brainstorming

4+ lectures then student presentations
you are expected to talk a lot!
ask questions, answer my questions

the goal is not instant perfection,
our goal is to have interesting discussions
read/understand/review/improve state-of-the-art research
you are expected to write one paper review for each class (so everyone is properly prepared for the in class discussions)
you are expected to write one paper review for each class (so everyone is properly prepared for the in class discussions)

review and slides should focus on
- what is the problem
- why is it important
- why is it hard
- why existing solutions do not work
- what is the core intuition for the solution
- solution step by step
- does the paper prove its claims
- exact setup of analysis/experiments
- are there any gaps in the logic/proof
- possible next steps

* follow a few citations to gain more background
you are expected to write one paper review for each class (so everyone is properly prepared for the in class discussions)

review and slides should focus on
 what is the problem
 why is it important
 why is it hard
 why existing solutions do not work
 what is the core intuition for the solution
 solution step by step
 does the paper prove its claims
 exact setup of analysis/experiments
 are there any gaps in the logic/proof
 possible next steps

* follow a few citations to gain more background

each class will typically begin with 4-5 students giving a quick fact about the paper
ACM Special Interest Group In Data Management (SIGMOD)
Undergrad Research Competition

CS265/165 students
2 entries in finals in 2015
2 entries in finals in 2016
1 entries in finals in 2017
+ first prize in 2016

world-wide competition from research labs in data management research
top 5-10 are invited to the conference to present their work
top 3 are given an award
EVERYONE CAN BE A DATA-SCIENTIST

making data systems easy to design, tune and use through adaptation and automation

You will see a lot of research in class & Research Tuesdays
how much work is it?

is this going to be like 165?

NO

“lightweight” systems project
even more research
and open ended
up to you how much you push
background:
programming
algorithms
data structures
hardware architectures

prerequisites
undergrad: cs165 || cs161
grad: systems classes
(talk to Stratos otherwise)

can I keep up

can I follow the class?
if not familiar with all the above = No
if some of the above are familiar = maybe

can I prepare?
yes - check next slide

http://daslab.seas.harvard.edu/classes/cs265/self_test.html
class 1, 2
logistics
my take on big data challenges
basics on data system architecture and design
history & future

class 3
more basics on data systems
scale up vs scale out
big data systems

class 4
intro to class projects

class 5+
paper presentations and round table discussions begin

cs165 will see a lot of overlapping material in the first 3 classes
hmm, my data is too big :(

big data?
haven’t we be doing data analysis forever

so what is new?
Every two days we create as much data as much we did from dawn of humanity to 2003.

[Eric Schmidt, Google]
data

star(id, name, distance, density, …)

[1, star1, x1, y1, …]
[2, star2, x2, y2, …]
[3, star3, x3, y3, …]
[4, star4, x4, y4, …]
...

21/63
data

star(id, name, distance, density, …)

[1, star1, x1, y1, …]
[2, star2, x2, y2, …]
[3, star3, x3, y3, …]
[4, star4, x4, y4, …]
...

data size
store - access

10s/100s
paper - just look at it!

data collection is the key
data

star(id, name, distance, density, …)

[1, star1, x1, y1, …]
[2, star2, x2, y2, …]
[3, star3, x3, y3, …]
[4, star4, x4, y4, …]
...

data size

store - access

10s/100s paper - just look at it!

K/M PC files - shell/excel

data collection is the key

learn a bit how computers work
star(id, name, distance, density, …)

[1, star1, x1, y1, …]
[2, star2, x2, y2, …]
[3, star3, x3, y3, …]
[4, star4, x4, y4, …]
...

data size

store - access

10s/100s paper - just look at it!

K/M PC files - shell/excel

data collection is the key

learn a bit how computers work

need a bit more tailored analysis

need serious programming skills

PC files - custom
data

star(id, name, distance, density, …)

[1, star1, x1, y1, …]
[2, star2, x2, y2, …]
[3, star3, x3, y3, …]
[4, star4, x4, y4, …]
…

data size

store - access

10s/100s paper - just look at it!
K/M PC files - shell/excel

data collection is the key
learn a bit how computers work

need a bit more tailored analysis
need serious programming skills

data-driven analysis

exploration - many users/updates

data sys. - declarative

big data V’s
(it is not about size only)

volume velocity variety veracity
big data V’s
(it is not about size only)

volume velocity variety veracity

actually none of that is really new…

new:
our ability to gather and store machine generated data
broad understanding that we cannot just manually get value out of data
data exploration

not always sure what we are looking for (until we find it)
“there are good chances we already have the data for the next big breakthroughs in say biology, medicine, etc. but we simply cannot extract the knowledge”

Martin Kersten, Stratos Idreos, Stefan Manegold and Erietta Liarou.
The Researcher’s Guide to the Data Deluge: Querying a Scientific Database in Just a Few Seconds.
Best paper award in Challenges and Visions
data systems are in the middle of all this
data system?
a data system **stores** data
provides access to data
and (ideally) makes data **analysis easy**
“relational databases are the foundation of western civilization”

Bruce Lindsay, IBM
ACM SIGMOD Edgar F. Codd Innovations award 2012
data systems are nearly everywhere...

continuous need for new and tailored data systems
data systems are nearly everywhere…

continuous need for new and tailored data systems
data systems are nearly everywhere…

continuous need for new and tailored data systems
more applications

more data

more h/w
declarative interface
ask “what” you want

the system decides “how” to best store and access data

db system

5 decades of research
IBM, Microsoft, Oracle, Teradata, etc.
and a gazillion start-ups today

why is this good
SQL queries

db system

>1 users concurrently

correct + complete answers

security/robustness
“Three things are important in the database world: performance, performance, and performance”

Bruce Lindsay, IBM
ACM SIGMOD Edgar F. Codd Innovations award 2012
265: new research in detail, new systems architectures (not just column-stores), new models (not just relational), scale out, and more
you will learn to design and implement db kernels!
Stratos’ unofficial data systems definition:

A data system is a massive collection of data structures, algorithms, data flow and caching policies. It should all play nice with hardware. Somehow we should always make the right choice about which data structure, algorithm, data flow and caching method we use. Ideally users/apps should be able to just use it.
so what is a good data system?
so what is a good data system?

it depends…

application requirements

performance

budget

hardware

energy profile
conflicting goals
(hardware and requirements change continuously and rapidly)

moving target

application requirements

performance

budget

hardware

energy profile
data systems design (and research) is kind of an art
build a key-value store
similar to the ones Facebook, Google, etc use

interface supported: put, get, scan, count, get range, load
unique key-value pairs, \(r \gg w \) but \(w \gg 0 \)

data

how to store and access
some questions:
what is key and what is value?
are they stored together?
can r/w fluctuate over time?
sort, b-tree, hash-table, scan, skip-list, zone-map?
what if we have 1000 queries or a million concurrent queries?
what if data is compressed?
multi-core, SIMD?
what if data does not fit in memory?
why/how
data systems architectures

some problems:
how to store data
how to access data

how to best answer a complex query
(e.g., which data to access first and how)

how to answer millions of queries concurrently

how to guarantee correctness and availability

how to spend the least possible energy

...
~1960s

~2010-now: industry adoption and evolution

late 1990s-early 2000: new designs start appearing

~2017

history/timeline
as apps become more complex
as apps need to be more scalable

newSQL
scale up vs scale out

performance - correctness - data models

using one machine as best as possible

using >1 machines as best as possible
logistics
big data systems:
e.g., column-store and hybrid systems, shared nothing architectures, cache-conscious algorithms, hardware/software co-design, main memory systems, adaptive indexing, stream processing, scientific data management, key value stores, noSQL, newSQL, systems for mobile computing, systems for human computer interaction

past but still relevant topics
e.g., relational model, row-store database systems, optimization, indexing, concurrency control, recovery, SQL

how and why did we get here and where things might go

no textbook - just research papers
cs265 goals
understanding system design **tradeoffs**
be able to **design** and **prototype** a data system!

see how the same concepts appear again and again
(it is all just bits!)

side-effects:
build or sharpen systems skills
(C programming, profiling, debugging and linux tools
algorithms & data structures
modern hardware architectures)

why
data system designer - researcher
any business - any science - any start-up
unlimited late days (except midway check-in)
unlimited office hours
research oriented
open ended questions
discussion oriented
round table
discussion/brainstorming

concepts/algorithms
problems/new ideas

2 papers each week
one scale up
one scale out

students:
1 presentation
2 reviews a week
option 1: systems project
basic key-value store functionality - work individually
single machine - multi-core design
basic design as in Facebook, LinkedIn, Mongo, etc.
can lead to research

option 2: research project
self-designing data systems + shape-shifting access methods
research with DASlab researchers - groups of 3
available for cs165 students or otherwise advanced students
projects

evaluation
end of semester + midway checkin point (for 10%)
face-to-face demo

what is a good research project
there will be specific “functionality/questions”
goals for both project options

coming often to OH makes evaluation just a formality
projects will be introduced in detail in class 4
students may also propose their own project
Project: 40%
Midway Check-in: 10%
Discussion: 20%
Presentation: 10%
Reviews: 20%
how to be successful in CS265?

ask a lot of questions, ask for a lot of help, come often to OH & extra sessions
piazza forum

all announcements & discussions

(link on class website - check out usage guidelines)
classes are recorded (links on class website)

extension school students have access now
college students will have access once as of next week
(but class 1 video is public)
NO LAPTOP/PHONE POLICY

class is based on participation!

we will bring a copy of the slides for every one
in each time class so you can follow and keep notes

+ there is enough evidence that laptops and phones slow you down
 (check syllabus for more info)
how can I prepare?

1) start browsing some basic texts

Get familiar with the very basics of traditional database architectures:

Get familiar with very basics of modern database architectures:

Get familiar with the very basics of modern large scale systems:

2) play with basic data structures implementation in C (Project 0)
prof. Stratos Idreos
other names: Efstratios Ydraios
Ευστράτιος Υδραίος, Στράτος Υδραίος

grew up in Greece - fav non-cs hobby: windsurfing

Diploma and ME Technical University of Crete, Greece
Ph.D. University of Amsterdam, Netherlands
Research Intern: IBM Research California, Microsoft Research Redmond, EPFL Switzerland
Visiting Professor: National University of Singapore, EPFL Switzerland

some awards:
ACM SIGMOD Jim Gray Dissertation Award
ERCIM Cor Baayen Award
IEEE TCDE Early Career Award

http://stratos.seas.harvard.edu/
MD139

OH every W/Th/F 3-4pm
+ a group of awesome TFs

Kostas, Postdoc
Mike, PhD, 5th year

office=MD136
2 classes per week - OH/Labs every day
1 presentation/discussion lead - 2 review each week
research (or systems) project + midway check-in
Action steps:

1) Read the syllabus & website carefully,
2) Register to Piazza,
3) Do P0 if you have not taken CS165,
4) Register for paper presentation (week 2),
5) Start submitting your paper reviews (week 3)

web site: http://daslab.seas.harvard.edu/classes/cs265/

piazza: piazza.com/harvard/spring2017/cs265/home

office hours: Stratos: Wed/Thur/Fri, 3-4pm, MD139

TF office hours: Mon ?, Tue, 3-4pm, MD 136

textbook: nope

research papers will be available from the Harvard network
welcome to CS265!

BIG DATA SYSTEMS

prof. Stratos Idreos

next up: more detailed logistics, e.g., midway check-in
introduction to guest lecturers (Microsoft/Google Research),
and start with data system design