The Image Calculator for Large-scale AI

Utku, 21 Februray 2023
Outline

- Problem definition
- Project 1 description
- Overall picture

- Image processing basics
- The Image Calculator
- Project 2 description
Outline

- Problem definition
- Project 1 description
- Overall picture
- Image processing basics
 - The Image Calculator
 - Project 2 description
Red-light cameras

New York City — 814 RL cameras

Colorectal cancer detection by tissue scans

Agricultural drones

- Black rot
- Powdery Mildew
- Apple scab
- Apple rot

[1] Image processing for smart farming: Detection of disease and fruit grading, ICIIP; 2013
1) Learn the task

Image data

Image processing algorithm
1) Learn the task

Image processing algorithm
2) Perform the task

Image data → Image processing algorithm
2) Perform the task

Image data

Image processing algorithm

Lobster!
Image processing algorithm = Convolutional Neural Networks (CNNs)

Powerful spatial-information processing machine
Efficient encoding of image data
Learning the task: Training

JPEG files ➔ RGB conversion ➔ Conv. Nnet

Host machine

GPU-accelerated machine

Conv. Nnet

RGB conversion

Host machine

GPU-accelerated machine

JPEG files

SSD

RGB conversion

CPU

GPU
Performing the task: Inference

JPEG files → RGB conversion → Conv. Nnet → GPU-accelerated machine

Lobster!
Data is bottleneck at every stage
Data is bottleneck at every stage
Data storage

JPEG files

Host machine

RGB conversion

GPU-accelerated machine

Conv. Nnet

Data is bottleneck at every stage
Outline

- Problem definition
- Project 1 description
- Overall picture
- Image processing basics
- The Image Calculator
- Project 2 description
Outline

- Problem definition
- Project 1 description
- Overall picture
- Image processing basics
- The Image Calculator
- Project 2 description

Overall picture
Every minute, >500-hours video uploaded to YouTube

[1] Figure taken from https://rb.gy/rm0hcy
Billions of parameters to learn

JPEG

JPEG is optimized for human-eye

Most images are consumed by AI models
JPEG is optimized for human-eye

Image processing algorithm

Can we have compression for AI models?
Outline

- Problem definition
- Project 1 description
- Overall picture
- Image processing basics
- The Image Calculator
- Project 2 description
Model A
Model B
Model C
Model D
Model E
Model F
What is the best compression scheme for an AI model?
Starting point: JPEG

Image

N\times N

Downsample

\frac{N}{2} \times \frac{N}{2}

Blockify

Encode

JPEG file

11100101010
10010101010
01100101011
Starting point: JPEG

JPEG is a set of design decisions
Creating a design space for compression

<table>
<thead>
<tr>
<th>Design primitives</th>
<th>Design choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling strategy:</td>
<td>2-by-2, 2-by-1, 1-by-2, 2-by-4, ...</td>
</tr>
<tr>
<td>Block size:</td>
<td>8x8, 16x16, 32x32, ...</td>
</tr>
<tr>
<td>Quantization matrix:</td>
<td>Any matrix of block size</td>
</tr>
</tbody>
</table>

Design space = all possible design choices

Each combination is a different compression scheme
Metrics

Accuracy Time Storage/bandwidth
Real-world models
The Image Calculator

- ML model & dataset
- Hardware & Workload
- User-defined requirements

- Design space
- World models

Optimal compression scheme
Outline

- Problem definition
- Project 1 description
- Overall picture
- Image processing basics
- The Image Calculator
- Project 2 description
Outline

Problem definition

Project 1 description

Overall picture

Image processing basics

The Image Calculator

Project 2 description
Project 1: Building accuracy model fast

- Train a few models & fit a curve
 > Slow…
Intuition 1: Each compressed version is a new dataset
Intuition 2: Images form clusters
Similar images close to each other in Euclidean space.
A class of images: a cluster
Image classification is a clustering problem.

Lobster

Hippopotamus

Ant
Examine predictive relationship between clustering-features and accuracy

C0 \rightarrow Accuracy0
C1 \rightarrow Accuracy1
C2 \rightarrow Accuracy2
...
CN \rightarrow AccuracyN
Examine predictive relationship between clustering-features and accuracy

C0 → Accuracy0
C1 → Accuracy1
C2 → Accuracy2
...
CN → AccuracyN

C0 → Clustering-feature0
C1 → Clustering-feature1
C2 → Clustering-feature2
...
CN → Clustering-featureN
Examine predictive relationship between clustering-features and accuracy

C0 → Accuracy0 → C0 → Clustering-feature0
C1 → Accuracy1 → C1 → Clustering-feature1
C2 → Accuracy2 → C2 → Clustering-feature2
... → ... → ...
CN → AccuracyN → CN → Clustering-featureN
Examine predictive relationship between clustering-features and accuracy
2) Create accuracy model by brute-force
 1 week

3) Explore clustering-metrics
 2 weeks

4) Examine predictive relationship
 2 weeks

5a) Move to another dataset
5b) Process-data & repeat
 6 weeks

1) Learn Pytorch
 1 week
What is success?

1) Learn Pytorch
 - 1 week

2) Create accuracy model by brute-force
 - 1 week

3) Explore clustering-metrics
 - 2 weeks

4) Examine predictive relationship
 - 2 weeks

5a) Move to another dataset
5b) Process-data & repeat
 - 6 weeks
Skills

Linux OS

GPU-accelerated computing

Storage understanding/estimation

Systems analysis/profiling

Fluent in Python & Pytorch
Outline

Problem definition

Image processing basics

The Image Calculator

Project 1 description

Project 2 description

Overall picture
Outline

- Problem definition
- Image processing basics
- The Image Calculator
- Project 1 description
- Project 2 description
- Overall picture
The Image Calculator

- ML model & dataset
- Hardware & Workload
- User-defined requirements

Optimal compression scheme
The Image Calculator

ML model & dataset → Fixed!

Hardware & Workload → The Image Calculator → Optimal compression scheme

User-defined requirements → The Image Calculator
Project 2: Building accuracy model for ML models

- Train one-by-one?
 > Way too slow…
Intuition 1: ML models have a structure
Intuition 1: ML models have a structure
Intuition 1: ML models have a structure

Conventional wisdom: larger models have larger capacity
Intuition 2: ML can share knowledge by transfer-learning
Intuition 2: ML can share knowledge by transfer learning
Intuition 2: ML can share knowledge by transfer learning
Explore predictive patterns in accuracy model

\[
\begin{align*}
&\text{M0} \rightarrow \text{Accuracy0} \\
&\text{M1} \rightarrow \text{Accuracy1} \\
&\text{M2} \rightarrow \text{Accuracy2} \\
&\ldots \\
&\text{MN} \rightarrow \text{AccuracyN}
\end{align*}
\]
Explore predictive patterns in accuracy model

M0 \rightarrow Accuracy0
M1 \rightarrow Accuracy1
M2 \rightarrow Accuracy2
...
MN \rightarrow AccuracyN

Design space of ML models

M0 M1 M2 ...
Exploit predictive patterns in accuracy model

- Intelligent sampling
- Transfer learning
1) Create accuracy model by brute-force
 - 1 week

3) Explore sampling and TL strategies
 - 3 weeks

1) Learn Pytorch
 - 1 week

2) Examine predictive pattern
 - 1 week

5) Move to another dataset
 - 6 weeks
What is success?

1) Create accuracy model by brute-force
 1 week

3) Explore sampling and TL strategies
 8 weeks

1) Learn Pytorch
 1 week

2) Examine predictive pattern
 1 week

5) Move to another dataset
 6 weeks
Skills

Linux OS

GPU-accelerated computing

Storage understanding/estimation

Systems analysis/profiling

Fluent in Python & Pytorch
Outline

Problem definition

Project 1 description

Overall picture

Image processing basics

The Image Calculator

Project 2 description
Outline

- Problem definition
- Project 1 description

- Image processing basics
- The Image Calculator
- Project 2 description

Overall picture
The Image Calculator

- Image dataset
- Hardware & Workload
- User-defined requirements

- Design space
- World models

- Optimal ML model
- Optimal compression scheme
Hardware & Workload
User-defined requirements
Image dataset

The Image Calculator

Design space
World models
Project 1
Optimal compression scheme
Fast world-model building for accuracy

Optimal ML model
Project 2

Optimal ML model
Optimal compression scheme

Exploring predictive accuracy models for a simplistic design space

Design space
World models

Image dataset
Hardware & Workload
User-defined requirements
JPEG files → Host machine → GPU-accelerated machine

RGB conversion

Conv. Nnet
JPEG files → RGB conversion → Conv. Nnet → GPU-accelerated machine

Data storage
Data movement

Host machine

GPU-accelerated machine

JPEG files

RGB conversion

Conv. Nnet
The Image Calculator: Data-model Co-design for Large-scale AI

- Image dataset
- Hardware & Workload
- User-defined requirements

Data design space
Data's world models
Network design space
Network's world models

Optimal ML model & compression scheme
Backup
What can we do?

- Image data

- Image processing algorithm
What can we do?

Image data

Image processing algorithm
Building accuracy model for ML models

Try each one-by-one?
> Way too slow…

Is there a predictive pattern?

Can we exploit predictive pattern?
Building accuracy model fast

Try each one-by-one?
> Way too slow...

Image classification: a clustering problem

Explore clustering-metrics vs. accuracy
Image processing algorithms need a lot of data.
Complex data

Complex algorithm

Real-world models

Storage/bandwidth

Time

Accuracy

☑
Storage/network cost

A single image ~2MB

TPC-H, lineitem table

<table>
<thead>
<tr>
<th>Orderkey</th>
<th>Partkey</th>
<th>...</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A single row ~170 bytes
Real-world models

- Storage/bandwidth
- Time
- Accuracy

Storage
SSD
WiFi
Time
Accuracy
Environmental cost

Execution time

[2] Once-for-All: Train One Network and Specialize it for Efficient Deployment, ICLR20
A novel compression scheme