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The Problem: LSM-Trees Have Suboptimal Read Performance
recently updated likely to be read next
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Recently updated keys ..but these keys are not necessarily
are the cheapest to access most likely to be read next
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The Solution: Splaying
MEMORY (SR MEMORY (S
o< o<
(O
Copy frequently accessed keys to top ...and over time the tree is reorganized
Use ‘get’ as a trigger for possible ‘put’ for better read performance
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Compared with the state-of-the-art solution of adding a cache:
Workload Key Range
FIeXSplay COSt / Vanllla + Cache COSt (l/Os) , OO [1, 9999] [5000, 14999] [10000, 19999] [20000, 29999] [30000, 39999]
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Pareto parameter
Splaying dominates cache ..and can offer adaptivity and better
in the absence of Bloom Filters performance across workloads
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