sml [JARVARD

T. Lively, L. Schroeder, C. Mendizabal

John A. Paulson Splayi ng LSM-Trees Advisor: Stratos Idreos

School of Engineering
and Applied Sciences

4 ™
The Problem: LSM-Trees Have Suboptimal Read Performance
recently updated likely to be read next
MEMORY g vemorY (DD ‘7
o< U s« QU
Recently updated keys ..but these keys are not necessarily
are the cheapest to access most likely to be read next
N Y
s B
The Solution: Splaying
MEMORY (SR MEMORY (S
o< o<
(O
Copy frequently accessed keys to top ...and over time the tree is reorganized
Use ‘get’ as a trigger for possible ‘put’ for better read performance
. /
4 N
Compared with the state-of-the-art solution of adding a cache:
Workload Key Range
FIeXSplay COSt / Vanllla + Cache COSt (l/Os) , OO [1, 9999] [5000, 14999] [10000, 19999] [20000, 29999] [30000, 39999]
l 10-
1.75
- 1.50 c 8-
- 1.25 §
1.00 C? °-
0.75 § 4.
0.50 %’_"
QO
IO'25 > ] === LSM+Cache
— FlexSplay
coo e AlwaysSplay
PSS PP o P o7 ° 0 20 40 60 80
SR O Operation Number (in 1000s)
Pareto parameter
Splaying dominates cache ..and can offer adaptivity and better
in the absence of Bloom Filters performance across workloads
N %

Ve 1 A

HARVARD - g
John A. Paulson daslab.seas.harvard.edu I H

School of Engineering o
and Applied Sciences




