
Transac'ons	and	Concurrency	
Control	



Problem	Statement	
•  Goal:	concurrent	execu'on	of	independent	transac'ons	

–  u'liza'on/throughput	(“hide”	wai'ng	for	I/Os)	
–  response	'me	
–  fairness	

•  Example:	

 
t0: 
t1: 
t2: 
t3: 
t4: 
t5: 

T1: 
tmp1 := read(X)  
 
tmp1 := tmp1 – 20 
 
write tmp1 into X 

T2: 
 
tmp2 := read(X)  
 
tmp2 := tmp2 + 10 
 
write tmp2 into X 

Arbitrary	interleaving	can	lead	to	inconsistencies	
2	



Correctness:	The	ACID	proper'es	

•  A	tomicity:		All	ac'ons	in	the	transac'on	happen,	or	none	
happen	

•  C	onsistency:		If	each	transac'on	is	consistent,	and	the	DB	
starts	consistent,	it	ends	up	consistent	

•  I	sola'on:		Execu'on	of	one	transac'on	is	isolated	from	
that	of	other	transac'ons	

•  D	urability:		If	a	transac'on	commits,	its	effects	persist	
	

3	



Transac'on	Consistency	
•  “Consistency”	-	data	in	DBMS	is	accurate	in	
modeling	real	world	and	follows	integrity	
constraints	

•  User	must	ensure	that	transac'on	is	consistent		
•  Key	point:	

consistent 
database 

S1 

consistent 
database 

S2 

transaction T 

C	

4	



Isola'on	of	Transac'ons	
•  Users	submit	transac'ons,	and		
•  Each	transac'on	executes	as	if	it	was	running	by	itself	

–  Concurrency	is	achieved	by	DBMS,	which	interleaves	
ac'ons	(reads/writes	of	DB	objects)	of	various	
transac'ons.	

•  Techniques	for	achieving	isola'on:	
–  Pessimis'c	–	don’t	let	problems	arise	in	the	first	place	
–  Op'mis'c	–	assume	conflicts	are	rare,	deal	with	them	
a"er	they	happen.	

I	

5	



Example	
•  Consider	two	transac'ons:	

T1: 	BEGIN			A=A+100,			B=B-100			END	
T2: 	BEGIN			A=1.06*A,			B=1.06*B			END	

I	

6	

•  Legal	outcomes:	A=1166,B=954	or	A=1160,B=960	
•  Consider	a	possible	interleaved	schedule:	

T1: 		A=A+100,			 	 						B=B-100				
T2: 				 										A=1.06*A,		 	 		B=1.06*B	

•  This	is	OK	(same	as	T1;T2).		But	what	about:	

T1: 		A=A+100,			 	 						 	 	B=B-100				
T2: 				 										A=1.06*A,	B=1.06*B	



Anomalies	with	Interleaved	Execu'on	

•  Reading	Uncommiged	Data	(WR	Conflicts,	“dirty	
reads”):	
	
	

•  Unrepeatable	Reads	(RW	Conflicts):	

T1:	 	R(A),	W(A),			 																R(B),	W(B),	Abort	
T2: 	 	 	R(A),	W(A),	C	

T1: 	R(A),		 	 						 				R(A),	W(A),	C	
T2: 	 	R(A),	W(A),	C	

I	

7	



Two-Phase	Locking	(2PL)	

•  Each	transac'on	must	obtain	an	S	(shared)	
lock	on	object	before	reading,	and	an	X	
(exclusive)	lock	on	object	before	wri'ng	

•  A	transac'on	can	not	request	addi'onal	
locks	once	it	releases	any	locks	

•  Thus,	there	is	a	“growing	phase”	followed	by	
a	“shrinking	phase”	

S X 

S √ – 

X – – 

Lock	
Compa'bility	
Matrix	

8	



Two-Phase	Locking	(2PL)	

•  2PL	on	its	own	is	sufficient	to	guarantee	
serializability,	but,	it	is	subject	to	Cascading	
Aborts	
	

'me	

#	locks	held	

release	phase	acquisi'on	
phase	

9	



R(A) R(B) W(A) W(B) 

R(A) W(A) R(B) W(B)         W(A) 

R(B) R(B) 

        R(A) 

W(B) 

        W(A) 

W(B) 

        R(A) 

R(A) R(B) W(A) W(B) 
R(A) W(A) R(B) W(B) 

10	



R(A) R(B) W(A) W(B) 
R(A) W(A) R(B) W(B) 

11	

First	transac'on	aborts	

ê	



	Strict	2PL	(con'nued)	

•  In	effect,	“shrinking	phase”	is	delayed	un'l	
a)  Transac'on	has	commiged	(commit	log	record	on	disk),	or	
b)  Decision	has	been	made	to	abort	the	transac'on	(locks	can	

be	released	aqer	rollback)	

# locks held 

acquisition 
phase 

time 

release all locks 
at end of xact 

12	



Non-2PL,	A=	1000,	B=2000,	Output	=?	
Lock_X(A) 

Read(A) Lock_S(A) 

A: = A-50 

Write(A) 

Unlock(A) 

Read(A) 

Unlock(A) 

Lock_S(B) 

Lock_X(B) 

Read(B) 

Unlock(B) 

PRINT(A+B) 

Read(B) 

B := B +50 

Write(B) 

Unlock(B) 13	



2PL,	A=	1000,	B=2000,	Output	=?	
Lock_X(A) 

Read(A) Lock_S(A) 

A: = A-50 

Write(A) 

Lock_X(B) 

Unlock(A) 

Read(A) 

Lock_S(B) 

Read(B) 

B := B +50 

Write(B) 

Unlock(B) Unlock(A) 

Read(B) 

Unlock(B) 

PRINT(A+B) 14	



Strict	2PL,	A=	1000,	B=2000,	Output	=?	
Lock_X(A) 

Read(A) Lock_S(A) 

A: = A-50 

Write(A) 

Lock_X(B) 

Read(B) 

B := B +50 

Write(B) 

Unlock(A) 

Unlock(B) 

Read(A) 

Lock_S(B) 

Read(B) 

PRINT(A+B) 

Unlock(A) 

Unlock(B) 15	



Locking	vs.	Latching	

•  Weird	database	terminology	
•  Lock	–	a	logical	concept	that	controls	access	to	
an	en'ty	

•  Latch	–	a	mutex,	also	called	a	lock	elsewhere	
in	computer	science.	
– This	is	a	physical	concept	oqen	supported	by	
hardware	instruc'ons	



Mul'ple-Granularity	Locks	

•  Hard	to	decide	what	granularity	to	lock	
(tuples	vs.	pages	vs.	tables)	

•  Shouldn’t	have	to	make	same	decision	for	
all	transac'ons!	

•  Data	“containers”	are	nested:		

Tuples	

Tables	

Pages	

Database	

contains	

17	



Lock	Manager	Implementa'on	
•  In	R	&	G,	chapter	17,	you	can	read	the	short	
implementa'on	sec'on	which	describes	the	
lock	manager	as	a	hash	map	

•  How	would	you	implement	a	lock	manager?	
–  Consider	locks	on	tuples	vs	locks	on	pages	vs	locks	on	
tables	

–  How	should	the	implementa'on	change	if	we	are	
opera'ng	in	memory	vs.	on	disk?	

18	



Further	Concepts	
• MVCC	

–  hgp://db.in.tum.de/~muehlbau/papers/mvcc.pdf	

•  Isola'on	Levels	
•  Tree	Locking	
•  Predicate	Locking	

19	


