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Introduction 

• Different architectures

– Performance 

– Data integrity 

– User interface
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Introduction 

• Theme: any trend in database technology can 
be traced to a trend in hardware

• Claim: The new database technologies are 
adaptations to changes in hardware 

Database designer Hardware
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History 

• 3 goals of database design

– Speed

– Affordability

– Resilience to system failure

• How you achieve them depends on hardware
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History

• Two storage media: 

Main Memory 
Fast, expensive, volatile 

Disk
Slow, cheap, non-volatile
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History

• How should data be stored across them?

• Main memory is volatile and expensive

Frequently 
accessed data 
is here

All data 
is here
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History

• To make a system fast, address bottleneck

• Disk is extremely slow

Fetch Retrieve

Main memory

Disk
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History

• To make a system fast, address bottleneck

• Disk is extremely slow

Fetch Retrieve

Pluto

Earth

Fetch Retrieve

Main memory

Disk
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History

• Why so slow?

• Two questions:
– Question 1: How to minimize disk access? 

– Question 2: What to do during a disk access? 

Disk hand 
moving
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History

• Problem: How to minimize disk accesses? 

• Solution: Store data that is frequently co-
accessed at the same physical location

• Consolidates many disk accesses to one

Data item 1

Data item 2
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ID Name Balance 

1 Bob 100
2 Sara 100
3 Will 450

History

• Example: Bank

• Co-locate all information about each customer

• Customer Sara deposits $100

Main 
Memory

Disk

Database

2 Sara 100

Add 
1002 Sara 200

2 disk accesses, since data 
about sara is co-located 
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History

• What to do during a disk access?

• Start running the next operation(s)

• Improves performance

• But data can get corrupted
16



History

• A couple, Bob and Sara, share a bank account

• Both deposit $100 at same time 

balance = 0
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History

• A couple, Bob and Sara, share a bank account

• Both deposit $100 at same time 

balance = 0

balance = 0 balance = 0
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History

• A couple, Bob and Sara, share a bank account

• Both deposit $100 at same time 

balance = 0

balance = 100 balance = 100
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History

• A couple, Bob and Sara, share a bank account

• Both deposit $100 at same time 

balance = 100

balance = 100 balance = 100

write write
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History

• A couple, Bob and Sara, share a bank account

• Both deposit $100 at same time 

balance = 100
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History

• A couple, Bob and Sara, share a bank account

• Both deposit $100 at same time 

balance = 100

Account balance should be 200!
Bob and Sara lost money. 
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History

• Question: how to achieve concurrency 
while maintaining data integrity?

• Insight: transactions can be concurrent, 
as long as they don’t modify the same data 

• Solution: locking
– Bob locks data, modifies it, releases lock

– Sara waits until lock is released

• Downside: 
– transactions may need to wait for locks. 

26



History

• 3 goals of database design

– Speed

– Affordability

– Resilience to system failure
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History

• 3 goals of database design

– Speed

–Affordability

– Resilience to system failure
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History

• Disk was cheap, but not so cheap

• 1 gigabyte for $10000 in 1980

• Avoid storing replicas of same data 

ID name account-ID balance 

1 Bob 1 100

2 Sara 1 100

3 Trudy 2 450
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History

• Solution: “Normalization”. Break tables. 

ID name account-ID balance 

1 Bob 1 100

2 Sara 1 100

3 Trudy 2 450ID name account-ID

1 Bob 1

2 Sara 1

3 Trudy 2

ID balance

1 100

2 450

Customers Accounts

• Bonus: Easier to maintain data integrity 30



History

• Normalization: 
– Saves storage space 

– Easier to maintain data integrity

• Downside: reads are more expensive

– Need to join tables

ID name account-ID

1 Bob 1

2 Sara 1

3 Trudy 2

ID balance

1 100

2 450

Customers Accounts
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History

• Data is decomposed accross tables

• Query Language: SQL

– select balance from Customers c, Accounts a 
where c.account-ID = a.ID and c.name = “Bob”

ID name account-ID

1 Bob 1

2 Sara 1

3 Trudy 2

ID balance

1 100

2 450

Customers Accounts
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History

• 3 goals of database design

– Speed

–Affordability

– Resilience to system failure
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History

• 3 goals of database design

– Speed

– Affordability

–Resilience to system failure
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History

• Many things can go wrong

– Power failure

– Hardware failure

– Natural disaster

• Data is precious (e.g. bank)

• Provide recovery mechanism
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Sara’s
balance = 100
Sara’s
balance = 100

History

• Example: Sara transfers $100 to Anna

• Power stops in the middle 

Anna’s 
balance = 450

Sara’s
balance = 0
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Sara’s
balance = 100

History

• Example: Sara transfers $100 to Anna

• Power stops in the middle 

Anna’s 
balance = 450

Sara’s
balance = 0
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Anna’s 
balance = 450
Anna’s
balance = 450

Sara’s
balance = 0

History

• Example: Sara transfers $100 to Anna

• Power stops in the middle 

Anna’s
balance = 550
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Anna’s 
balance = 450
Anna’s 
balance = 450

Sara’s
balance = 0

History

• Example: Sara transfers $100 to Anna

• Power stops in the middle 

Anna’s
balance = 550

At this point, power fails
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History

• Transaction: a sequence of operations all 
takes place, or none take place.

• Transactions should be atomic
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History

• Problem: how to guarantee atomicity? 

• Solution: use a log (on disk )

• All data changes are recorded in the log

• After power failure, examine log 

• Undo changes by unfinished transactions 

Data Log
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History

• Data integrity
– Concurrency (fix with locking)

– System failure (fix with logging)

• ACID
– Atomicity

– Consistency

– Isolation

– Durability
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History

• Summary
– Speed

– Affordability

– Resilience to system failure

• Relational databases:
– Normalize data into multiple tables 

– ACID (locking & logging)

– SQL 

• Design decisions are motivated by hardware
43



Today
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Today

• What changed in hardware?

• How does it affect database design? 
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Today

• Disk is 107 times cheaper

• Main memory is 106 times cheaper
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Today

• Disk is now dirt cheap

• Organizations keep all historical data

• Business intelligence

• E.g. Amazon

– revenues from product X on date Y

– which products are bought together
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Today

• Traditional system architecture: 

End users
Transactional 

Database
Business

Intelligence

transactions
Analytical 

queries
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Today

• Problem: 

–Analytical queries are expensive 
• Touch a lot of data 

• Disk access

• Locks

–They slow down transactions. 

–End-users wait longer
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Today

• Solution: split database

End users
Transactional 

Database
Data

warehouse
Business

Intelligence
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Today

• Different workloads

• Different internal design

Transactional 
Database Data

warehouse
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Today

• Example analytical queries

– How long is delivery? (2 columns, all rows)

– Revenue from product X? (2 columns, all rows) 

• Problem: 

– Data is stored row by row

order
id

cust
id

product
id

price order
date

receipt
date

priority status comment

... ... ... ... ... ... ... ... ...
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• Solution: column-store 
– Each column is stored separately

– Good for analytical queries

– Changes entire architecture 

– Examples: Vertica, Vectorwise, Greenplum, etc. 

order
id

cust
id

status price order
date

receipt
date

priority clerk comment

... ... ... ... ... ... ... ... ...

Today
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Today

• How are transactional databases affected 
by hardware changes?

Transactional 
Database
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Today

• Main memory is cheaper 

• Terabytes are affordable

• Enough to store all transactional data

• E.g. Amazon

– Products list

– User accounts 
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Today

• Main memory was expensive

• Now it’s cheaper 

Data Log
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Today

• Transactional databases are main memory 
databases 

• Bottleneck used to be disk access 

• The new bottleneck is ACID (logging, locking)

Useful work

ACID

Disk access

Useful work

ACID
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Today
• More challenges

• Due to internet, 100% availability is key

• Data is replicated 

…

…
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Today

• Joins become more expensive

ID name account-ID

1 Bob 1

2 Sara 1

3 Trudy 2

ID balance

1 100

2 450

Customers Accounts

Joins
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Today

• Replication and locks become more expensive 

Accounts Accounts

Replication, locks

ID balance

1 100

2 450

ID balance

1 100

2 450
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Today

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking
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Today

• NoSQL and NewSQL address these

–NoSQL simplifies

–NewSQL engineers 
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NoSQL
(MongoDB)
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NoSQL
(MongoDB)
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NoSQL

• Name popularized in 2009

• Conference on “open source distributed non-
relational databases”

• NoSQL was a hashtag
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NoSQL

• Different types

– Document stores 

– Column-oriented 

– Key-value-stores 

– Graph databases

Similar 

Different
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NoSQL

• MongoDB - Main decisions

1. No joins 

• Aggregate related data into “documents”
• Reduces network traffic 

• Data modeling is harder

2. No ACID

• Faster

• Concurrency & system failure can corrupt data 
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NoSQL

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking
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NoSQL

• To avoid joins, data is de-normalized

ID name account-ID

1 Bob 1

2 Sara 1

3 Trudy 2

ID balance

1 100

2 450

Customers Accounts

ID name account-ID balance 

1 Bob 1 100

2 Sara 1 100

3 Trudy 2 450 69



NoSQL

• In MongoDB

• db.customers.find(name:“Sara”)

Collection of 
customer 
Documents

{	 name: “Bob”,
account-ID: 1,
balance: 100 }

{	name: “Sara”,
account-ID: 1,
balance: 100 }

{	 name: “Trudy”,
account-ID: 2,
balance: 450 }
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NoSQL

• Documents are flexible

{	 name: “Bob”,
account-ID: 1,
balance: 100, 
favorite-color: “red”
credit-score: 3.0

}

{	name: “Sara”,
account-ID: 1,
balance: 100 
hobbies: [“rowing”, “running”]

}
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NoSQL

• Main point: no need for joins

• All related data is in one place 

72

{	 name: “Bob”,
account-ID: 1,
balance: 100, 
favorite-color: “red”
credit-score: 3.0

}



NoSQL

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking
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NoSQL

• MongoDB does not lock 

• Recall Bob and Sara 

• Deposit $100 at same time to shared account

• Overwrite each other’s update

No general way to prevent this
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NoSQL

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking
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NoSQL

• Eventual consistency

• Different operation order across replicas 

• E.g. concurrent addition and multiplication

Deposit
Add 100

Interest 
Multiply by 1.1

{		…
balance: 100

... }

{		…
balance: 100

... }
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NoSQL

• Eventual consistency

• Different operation order across replicas 

• E.g. concurrent addition and multiplication

Deposit
Add 100

Interest 
Multiply by 1.1

{		…
balance: 100

... }

{		…
balance: 100

... }
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NoSQL

• Eventual consistency

• Different operation order across replicas 

• E.g. concurrent addition and multiplication

Deposit
Add 100

Interest 
Multiply by 1.1

Inconsistent 
replicas

{		…
balance: 220

... }

{		…
balance: 210

... }
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NoSQL

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking
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NoSQL

• When to use MongoDB?

• Non-interacting entities 

– No sharing (e.g. bank account)

– No exchanging (e.g. money transfers)

• Commutative operations on data 

• You need a flexible data model
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NewSQL
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NewSQL

• ACID & good performance

• Redesign internal architecture. 
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NewSQL

• Data is normalized into multiple tables

• Tables partitioned and replicated across machines

ID name account-ID

1 Bob 1

2 Sara 1

3 Trudy 2

ID balance

1 100

2 450

Customers Accounts
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NewSQL

• Single machine bottlenecks:

• Multiple machines bottlenecks:

Replication, locks, joins

Logging & locking
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NewSQL

• History: concurrent transactions were 
introduced since disk was slow

• Today: Now all data is in main memory 

• Transactions in main memory are fast 

• Less need for concurrency 

• VoltDB removes concurrency

• Thus, no need for locking 
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NewSQL

• Recall Bob and Sara 

• Deposit $100 at same time to shared account

• Overwrite each other’s update

In VoltDB, this cannot happen 
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NewSQL

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking
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NewSQL

• History: log introduced for recovery

• Today: it takes too long to recover from log

• Instead, replicate data across machines  

• If one machine fails, others continue working 

• Simplifies logging
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NewSQL

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking
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NewSQL

• Try to avoid joins across machines

• Store data that is commonly accessed at 
same time on same machine

ID name account-ID

1 Bob 1

2 Sara 1

ID balance

1 100

Customers 

ID name account-ID

3 Trudy 2

ID balance

2 450

Customers 

AccountsAccounts
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NewSQL

ID name account-ID

1 Bob 1

2 Sara 1

ID balance

1 100

Customers 

ID name account-ID

3 Trudy 2

ID balance

2 450

Customers 

AccountsAccounts

• Alleviates problem

• Does not solve it (e.g. money transfer)
91



NewSQL

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking
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NewSQL

• Tables are replicated 

• Enforce operation order across replicas 

Deposit
Add 100

Interest 
Multiply by 1.1

ID balance

... 100

ID balance

... 100
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NewSQL

• Tables are replicated 

• Enforce operation order across replicas 

Deposit
Add 100

Interest 
Multiply by 1.1

ID balance

... 100

ID balance

... 100
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NewSQL

• Tables are replicated 

• Enforce operation order across replicas 

Deposit
Add 100

Interest 
Multiply by 1.1

ID balance

... 200

ID balance

... 200
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NewSQL

• Tables are replicated 

• Enforce operation order across replicas 

Deposit
Add 100

Interest 
Multiply by 1.1

ID balance

... 200

ID balance

... 200
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NewSQL

• Tables are replicated 

• Enforce operation order across replicas 

Deposit
Add 100

Interest 
Multiply by 1.1

ID balance

... 200

ID balance

... 200
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NewSQL

• Tables are replicated 

• Enforce operation order across replicas 

Deposit
Add 100

Interest 
Multiply by 1.1

ID balance

... 220

ID balance

... 220
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NewSQL

• Tables are replicated 

• Enforce operation order across replicas 

Deposit
Add 100

Interest 
Multiply by 1.1

ID balance

... 220

ID balance

... 220
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NewSQL

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking
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NewSQL

• When to use VoltDB?

– run at scale 

–You need 100% availability

–You need ACID 

101



Conclusion
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Conclusion

• Hardware is cheaper 
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Conclusion

Transactional 
Database

Data 
warehouses

104
Row-store Column-store 



Conclusion

• Single machine bottlenecks:

• Multiple machines bottlenecks:

Replication, locks, joins

Logging & locking
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Conclusion

• NoSQL adapts by simplifying

– No ACID

– No joins

• NewSQL adapts by reengineering

– ACID

– Removes concurrency 

– Simplifies logging 

– Smart but limited partitioning across servers
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Conclusion

• Disclaimer: there is much more

– Scientific databases: 

– Time series databases:

– Graph databases

• Caveat: rapid changes

• But hopefully now you have reasoning tools
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Conclusion

• Thanks! 
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