Demystitying the Zoo of
Contemporary Database Systems

CS165 Section
Niv Dayan

Introduction

MHS[QRL
ERr .
ORACLE §5°f§ékver'

1980 1990 2000 2010

Time

Introduction

HEBASE

Neoy]j

R ®° the graph database /W‘

MySoll
é redi S cassandra

PostgreSQL ?S QL ite @ @
ORACLE SOL Server Solr= ‘ mongo
>
1980 1990 2000 2010

Time 3

Introduction

 Ditferent architectures
— Performance
— Data integrity

— User interface

Introduction

 Ditferent architectures
— Performance
— Data integrity

— User interface

«£EA

Introduction

« Theme: any trend in database technology can
be traced to a trend in hardware

Database designer =~ Hardware

 Claim: The new database technologies are
adaptations to changes in hardware

DBHistory

History

* 3 goals of database design
— Speed
— Affordability

— Resilience to system failure

* How you achieve them depends on hardware

History

* Two storage media:

Main Memory
Fast, expensive, volatile

Disk

Slow, cheap, non-volatile

History

e How should data be stored across them?

 Main memory is volatile and expensive

10

History

 To make a system fast, address bottleneck

* Disk is extremely slow

Main memory

11

History

 To make a system fast, address bottleneck

* Disk is extremely slow

Main memory

\
\

" Fetch Retrieve 1
|

12

History

* Why so slow?

Disk hand

moving

* T'wo questions:
— Question 1: How to minimize disk access?
— Question 2: What to do during a disk access?

13

History

e Problem: How to minimize disk accesses”?

* Solution: Store data that is frequently co-
accessed at the same physical location

* Consolidates many disk accesses to one

Data item 1

Data item 2

14

History

 Example: Bank
e (Co-locate all information about each customer

¢ Customer Sara deposits $100

2 disk accesses, since data

Main .
- Add
Memory atéout sarg Is co loc?ofned Ad
ID Name Balance
Disk 1 Bob 100
3 Will 450

Database P

History

What to do during a disk access?
< .

>

|

Start running the next operation(s)

Improves performance

But data can get corrupted

History

* A couple, Bob and Sara, share a bank account
* Both deposit $100 at same time

On

balance = 0

17

History

* A couple, Bob and Sara, share a bank account
* Both deposit $100 at same time

O balance = 0

& L

Retrieve

Fetch
balance = 0

18

History

* A couple, Bob and Sara, share a bank account
* Both deposit $100 at same time

O balance = 0

balance = 0

19

History

* A couple, Bob and Sara, share a bank account
* Both deposit $100 at same time

N balance = 0 balance = 0

D »
Retriev 1
Fetch

o—

& alance = 0

20

History

* A couple, Bob and Sara, share a bank account
* Both deposit $100 at same time

N balance = 0 balance = 0

& L

balance = 0

21

History

* A couple, Bob and Sara, share a bank account
* Both deposit $100 at same time

N balance = 100 balance = 100

& L

balance = 0

22

History

* A couple, Bob and Sara, share a bank account
* Both deposit $100 at same time

N balance = 100 balance = 100
» L

write write

alance = 100

23

History

* A couple, Bob and Sara, share a bank account
* Both deposit $100 at same time

On

balance = 100

24

History

* A couple, Bob and Sara, share a bank account
* Both deposit $100 at same time

ON
Account balance should be 200!
Bob and Sara lost money.

balance = 100

25

History

Question: how to achieve concurrency
while maintaining data integrity?

Insight: transactions can be concurrent,
as long as they don’t modifty the same data
Solution: locking @

— Bob locks data, modifies it, releases lock

— Sara waits until lock is released

Downside:
— transactions may need to wait for locks.

History

* 3 goals of database design
— Speed
— Affordability

— Resilience to system failure

History

* 3 goals of database design
— Speed
— Affordability

— Resilience to system failure

History

* Disk was cheap, but not so cheap
* 1 gigabyte for $10000 in 1980

* Avoid storing replicas of same data

ID name account-ID balance
1 Bob 1 100
2 Sara 1 100
3 Trudy 2 450

29

History

e Solution: “Normalization”. Break tables.

ID name account-ID balance
1 ob 1 100
2Customerssar8L L L Alccounts
ID %ame Tra%@uunt D 2 4&!’) balance
1 Bob 1 1 100
2 Sara 1 2 450
3 Trudy 2

* Bonus: Easier to maintain data integrity

30

History

e Normalization:
— Saves storage space
— Kasier to maintain data integrity
 Downside: reads are more expensive
— Need to join tables

Customers Accounts
ID name account-I1D ID balance
1 Bob 1 1 100
2 Sara 1 2 450
3 Trudy 2

History

 Data is decomposed accross tables

* Query Language: SQL

— select balance from Customers ¢, Accounts a

where c.account-ID = a.ll

Customers
ID name account-ID
1 Bob 1
2 Sara 1
3 Trudy 2

D and c.name = “Bob”

Accounts

ID

balance

1
2

100
450

History

* 3 goals of database design
— Speed
— Affordability

— Resilience to system failure

History

* 3 goals of database design
— Speed
— Affordability

— Resilience to system failure

History

 Many things can go wrong

— Power failure
— Hardware failure

— Natural disaster

* Data is precious (e.g. bank)

* Provide recovery mechanism

History

« Example: Sara transfers $100 to Anna

 Power stops in the middle

Sara’s
balance = 0

Anna’s
balance = 450

Sara’s

C balance = 100

History

« Example: Sara transfers $100 to Anna

 Power stops in the middle

Sara’s
balance = 0

Anna’s
balance = 450

Sara’s

C balance = 100

History

« Example: Sara transfers $100 to Anna

 Power stops in the middle

Anna’s
balance = 550

Anna’s
balance = 450

Sara’s

C balance = 0

History

« Example: Sara transfers $100 to Anna

 Power stops in the middle

At this point, power fails

Anna’s
balance = 550

Anna’s
balance = 450

Sara’s

C balance = 0

History

 Transaction: a sequence of operations all
takes place, or none take place.

e Transactions should be atomic

History

* Problem: how to guarantee atomicity”
* Solution: use a log (on disk)

* All data changes are recorded in the log
* After power failure, examine log

* Undo changes by unfinished transactions

History

* Data integrity
— Concurrency (fix with locking)
— System failure (fix with logging)

« ACID
— Atomicity
— Consistency
— Isolation
— Durability

History

* Summary
— Speed
— Affordability
— Resilience to system failure

 Relational databases:

— Normalize data into multiple tables
— ACID (locking & logging)
— SQL

* Design decisions are motivated by hardware

Today

Today

* What changed in hardware?

 How does it affect database design?

Today

« Disk is 107 times cheaper

* Main memory is 10° times cheaper

7

10
SR < Main Memory
/\105 ><><><><><><><><><>< DlSk
n
~—~ 3 Xx
M 10 . XXX
@) . XX XXy
E—‘) 10 “ X
@F
@ -1
= 10
3
107
_5 -----

1980 1985 1990 1995 2000 2005
Year

Today

Disk is now dirt cheap
Organizations keep all historical data
Business intelligence

E.g. Amazon
—revenues from product X on date Y

— which products are bought together

47

Today

* Traditional system architecture:

Analytical

> - transactions
— querles
(E?% — g “
Transactional Business

End users Database Intelligence

48

Today

e Problem:

— Analytical queries are expensive
 Touch a lot of data

e Disk access
e Locks

— They slow down transactions.

— End-users wait longer

Today

* Solution: split database

é@%ﬁgﬁ

End users

Transactional
Database

~

N R Ga—

Data
warehouse

Business
Intelligence

50

Today

e Different workloads

* Different internal design

S . ¥

. g

Transactional S’
Database Data

warehouse

51

Today

order

id

cust

id

product
id

price

order
date

receipt
date

priority

status

comment

 Example analytical queries

— How long is delivery? (2 columns, all rows)

— Revenue from product X? (2 columns, all rows)

e Problem:

— Data is stored row by row

52

Today

order
id

cust

id

status

price

order
date

receipt
date

priority

clerk

comment

 Solution: column-store

— Each column is stored separately

— Good for analytical queries

— Changes entire architecture

— Examples: Vertica, Vectorwise, Greenplum, etc.

Today

e How are transactional databases atfected
by hardware changes?

q

Transactional
Database

54

Today

Main memory is cheaper
Terabytes are atfordable
Enough to store all transactional data

E.g. Amazon
— Products list

— User accounts

55

Today

* Main memory was expensive

 Now it’s cheaper

Data Log

56

Today

* Transactional databases are main memory
databases

 Bottleneck used to be disk access

* The new bottleneck is ACID (logging, locking)

m Useful work ’ m Useful work
ACID ACID

Disk access

Today

 More challenges
* Due to internet, 100% availability is key

* Data is replicated

g
(S% g :>\ =
S g |

&

Today

* Joins become more expensive

Joins

)

Customers
ID name account-1D
1 Bob 1
2 Sara 1
3 Trudy 2

=

Accounts

balance

100
450

59

Today

* Replication and locks become more expensive

< Replication, locks -
g B

Accounts Accounts
ID balance ID balance

1 100 1 100

2 450 2 450

60

Today

* Single machine bottlenecks:

g Logging & locking

* Multiple machine bottlenecks:

Replication, locks, joins

g > 8

61

Today

* NoSQL and NewSQL address these
—NoSQL simplifies
—NewSQL engineers

NoSQL
(MongoDB)

Dec

1.
2.
3.
A 5.
¥ 4.
6.
A 8.
¥ 7.
A 10.

Rank
Dec Nov
2016 2016 2015

1. 1
2. 2
3. 3
4, 4
5. 5.
6. 6
7. 7
8. 8
9. -
10. 10.

¥ 9.

NoSQL
MongoDB

Oracle &2

MySQL E2

Microsoft SQL Server
PostgreSQL
MongoDB k&4

DB2

Cassandra k2
Microsoft Access
Redis

SQLite

Database Model

Relational DBMS
Relational DBMS
Relational DBMS
Relational DBMS
Document store
Relational DBMS
Wide column store
Relational DBMS
Key-value store

Relational DBMS

http://db-engines.com/en/ranking

Score

Dec Nov
2016 2016
1404.40 -8.60
1374.41 +0.85
1226.66 +12.86
330.02 +4.20
328.68 +3.21
184.34 +2.89
134.28 +0.31
124.70 -1.27
119.89 +4.35
110.83 -1.17

Dec
2015

-93.15
+75.87
+103.50
+49.92
+27.29
-11.78
+3.44
-15.51
+19.36
+9.98

64

NoSQL

 Name popularized in 2009

* Conference on “open source distributed non-
relational databases”

* NoSQL was a hashtag

NoSQL

* Different types

— Document stores
— Column-oriented

— Key-value-stores

— Graph databases

’mongo
o

cassandra

é redis

S—

%@neoqj }

Similar

Different

66

NoSQL

* MongoDB - Main decisions

1. No joins
» Aggregate related data into “documents”
* Reduces network traffic
e Data modeling is harder

2. No ACID

e Faster
* Concurrency & system failure can corrupt data

NoSQL

* Single machine bottlenecks:

g Logging & locking

 Multiple machine bottlenecks:

| Replication, locks
o B

68

NoSQL

 To avoid joins, data is de-normalized

Customers
ID name account-ID
1 Bob 1
2 Sara 1
3 Trudy 2

S

Accounts

ID balance
1 100
2 450

ID name account-ID balance
1 Bob 1 100
2 Sara 1 100
3 Trudy 2 450

69

* In MongoDB

Collection of
customer
Documents

* db.customers.find(name:“Sara”)

NoSQL

~——

{ name: “Bob”,
account-ID: 1,
bal : 100
alance ! 7
{ name: “Sara”,
account-ID: 1,
alance 1 7
{ name: “Trudy”,
account-ID: 2,
balance: 450 } 7

NoSQL

e Documents are flexible

{ name: “Bob”,
account-1D: 1,
balance: 100,

favorite-color: “red”
credit-score: 3.0

}

4

{ name:

}

account-1D: 1,
balance: 100
hobbies: [“rowing

144 o

Y

“Sara”,

running”|

y

NoSQL

 Main point: no need for joins

* All related data is in one place

{ name: “Bob”,
account-1D: 1,
balance: 100,

favorite-color: “red”
credit-score: 3.0

} 4

NoSQL

* Single machine bottlenecks:
g Logging &:

* Multiple machine bottlenecks:

,, Replication, locks, @
g B

73

NoSQL

MongoDB does not lock
Recall Bob and Sara,

Deposit $100 at same time to shared account

Overwrite each other’s update

ON
0 L

No general way to prevent this

74

NoSQL

* Single machine bottlenecks:

g Logging & l®g

* Multiple machine bottlenecks:

g <Replication,®> g

75

NoSQL

 Eventual consistency
» Different operation order across replicas

* E.g. concurrent addition and multiplication

N
Deposit {
Add 100 balance: 100 -
e } 7
@ ‘. |
Interest balance: 100
“ Multiply by 1.1 oo b 7

76

NoSQL

 Eventual consistency
» Different operation order across replicas

* E.g. concurrent addition and multiplication

s Deposit {
Add 100 balance: 100
o} 7
- »
Interest balance: 100
“ Multiply by 1.1 oo b 7

77

NoSQL

 Eventual consistency
» Different operation order across replicas

* E.g. concurrent addition and multiplication

N |

e Deposit {

Q Add 100 balance: 220 =
Inconsistent o} 7
replicas

{ .. «

@ Interest balance: 210

“ Multiply by 1.1 oo b 7

78

NoSQL

* Single machine bottlenecks:

g Logging & 1@

* Multiple machine bottlenecks:

g —

Replication, @ @

79

NoSQL

When to use MongoDB?

Non-interacting entities

— No sharing (e.g. bank account)

— No exchanging (e.g. money transfers)
Commutative operations on data

You need a flexible data model

NewSQL

NewSQL

 ACID & good performance

* Redesign internal architecture.

NewSQL

 Data is normalized into multiple tables

 Tables partitioned and replicated across machines

Customers Accounts
ID name account-ID ID balance
1 Bob 1 1 100
2 Sara 1 2 450
3 Trudy 2

83

NewSQL

* Single machine bottlenecks:

* Multiple machines bottlenecks:

Replication, locks, joins

g —— B

84

NewSQL

History: concurrent transactions were
introduced since disk was slow

Today: Now all data is in main memory
Transactions in main memory are fast

Less need for concurrency

VoltDB removes concurrency

Thus, no need for locking

NewSQL

e Recall Bob and Sara

* Deposit $100 at same time to shared account

 Overwrite each other’s update

ON
0B »

In VoltDB, this cannot happen

86

NewSQL

* Single machine bottlenecks:

g Logging & l®g

* Multiple machine bottlenecks:

Replication, locks, joins

g > 8

87

NewSQL

History: log introduced for recovery
Today: it takes too long to recover from log
Instead, replicate data across machines

If one machine fails, others continue working

Simplifies logging

NewSQL

* Single machine bottlenecks:
g 0®
* Multiple machine bottlenecks:

| Replication, locks
§ —— 8

89

* Store data that is commonly accessed at
same time on same machine

NewSQL

* Try to avoid joins across machines

-

Customers

~

ID

name

account-I1D

Bob
Sara

1
1

Accounts

ID balance

1 100

J

g
'

-~

4 Customers

~

ID

name

account-I1D

3

Trudy

2

Accounts

ID

balance

2

450

J

<

90

NewSQL

-

Customers

~

ID

name

account-I1D

Bob
Sara

1
1

Accounts

balance

° Aﬂéxqateé—meblem 1)

* Does %SOIVG it (e.g. money tra%r)
t‘ “ 91

-

4 Customers

~

o

ID name account-I1D
3 Trudy 2
Accounts
ID balance

2

450

J

NewSQL

* Single machine bottlenecks:

g L@g&k@g

 Multiple machine bottlenecks:

=

NewSQL

e Tables are replicated
* Enforce operation order across replicas

Deposit

Add 100 ID baizgce

N
&
‘@' Interest ID balance

100
Multiply by 1.1

e Tables are replicated

NewSQL

* Enforce operation order across replicas

A
@

Deposit - —
Add 100 00
Interest 1D balance

Multiply by 1.1

100

=
3

94

e Tables are replicated

NewSQL

* Enforce operation order across replicas

A
@

Deposit - —
Add 100 200
Interest 1D balance

Multiply by 1.1

200

=
3

95

NewSQL

e Tables are replicated
* Enforce operation order across replicas

Deposit

Add 100 ID ba;gce

N
&
‘@' Interest ID balance

200
Multiply by 1.1

e Tables are replicated

NewSQL

* Enforce operation order across replicas

A
@

Deposit
Add 100

Interest
Multiply by 1.1

ID

balance

200

ID

balance

200

=
3

97

e Tables are replicated

NewSQL

* Enforce operation order across replicas

A
@

Deposit
Add 100

Interest
Multiply by 1.1

ID

balance

220

ID

balance

220

=
3

98

NewSQL

e Tables are replicated
* Enforce operation order across replicas

Deposit

Add 100 ID ba;;gce

N
&
‘@' Interest ID balance

220
Multiply by 1.1

NewSQL

* Single machine bottlenecks:

g L@g&k@g

 Multiple machine bottlenecks:

=

Replication, locks, @

100

NewSQL

* When to use VoltDB?
—run at scale
—You need 100% availability
—You need ACID

Conclusion

Conclusion

 Hardware is cheaper

EN|

10
. < Main Memory
/\105 ><><><><><><><><><>< DlSk
& X
N—r 3 %
m 10 X x
U XX KXy
E-‘) 10 & XXX X % % X %
@F
D -1
2 10
3
107
N e
1980 1985 1990 1995 2000 2005 2010 2015

Year

Conclusion

= = =

Transactional
Database

”

Row-store

(L

Data
warehouses

Column-store

104

Conclusion

* Single machine bottlenecks:

g Logging & locking

 Multiple machines bottlenecks:

Replication, locks, joins

g —— B

105

Conclusion

* NoSQL adapts by simplifying
— No ACID
— No joins
 NewSQL adapts by reengineering
— ACID
— Removes concurrency
— Simplifies logging

— Smart but limited partitioning across servers

Conclusion

e Disclaimer: there is much more

— Scientific databases: RSciDE

— Time series databases: DB

— Graph databases @ neoy)
* Caveat: rapid changes

 But hopetfully now you have reasoning tools

Conclusion

e Thanks!

108

