
CS165 Section

Niv Dayan

Demystifying the Zoo of
Contemporary Database Systems

1

Introduction

1980 1990 2000 2010

2Time

Introduction

1980 1990 2000 2010

3Time

Introduction

• Different architectures

– Performance

– Data integrity

– User interface

4

Introduction

• Different architectures

– Performance

– Data integrity

– User interface

5

Introduction

• Theme: any trend in database technology can
be traced to a trend in hardware

• Claim: The new database technologies are
adaptations to changes in hardware

Database designer Hardware

6

DBHistory

7

History

• 3 goals of database design

– Speed

– Affordability

– Resilience to system failure

• How you achieve them depends on hardware

8

History

• Two storage media:

Main Memory
Fast, expensive, volatile

Disk
Slow, cheap, non-volatile

9

History

• How should data be stored across them?

• Main memory is volatile and expensive

Frequently
accessed data
is here

All data
is here

10

History

• To make a system fast, address bottleneck

• Disk is extremely slow

Fetch Retrieve

Main memory

Disk
11

History

• To make a system fast, address bottleneck

• Disk is extremely slow

Fetch Retrieve

Pluto

Earth

Fetch Retrieve

Main memory

Disk
12

History

• Why so slow?

• Two questions:
– Question 1: How to minimize disk access?

– Question 2: What to do during a disk access?

Disk hand
moving

13

History

• Problem: How to minimize disk accesses?

• Solution: Store data that is frequently co-
accessed at the same physical location

• Consolidates many disk accesses to one

Data item 1

Data item 2

14

ID Name Balance

1 Bob 100
2 Sara 100
3 Will 450

History

• Example: Bank

• Co-locate all information about each customer

• Customer Sara deposits $100

Main
Memory

Disk

Database

2 Sara 100

Add
1002 Sara 200

2 disk accesses, since data
about sara is co-located

15

History

• What to do during a disk access?

• Start running the next operation(s)

• Improves performance

• But data can get corrupted
16

History

• A couple, Bob and Sara, share a bank account

• Both deposit $100 at same time

balance = 0

17

History

• A couple, Bob and Sara, share a bank account

• Both deposit $100 at same time

balance = 0

balance = 0

Fetch

Retrieve

18

History

• A couple, Bob and Sara, share a bank account

• Both deposit $100 at same time

balance = 0

balance = 0

19

History

• A couple, Bob and Sara, share a bank account

• Both deposit $100 at same time

balance = 0

balance = 0 balance = 0

Fetch

Retrieve

20

History

• A couple, Bob and Sara, share a bank account

• Both deposit $100 at same time

balance = 0

balance = 0 balance = 0

21

History

• A couple, Bob and Sara, share a bank account

• Both deposit $100 at same time

balance = 0

balance = 100 balance = 100

22

History

• A couple, Bob and Sara, share a bank account

• Both deposit $100 at same time

balance = 100

balance = 100 balance = 100

write write

23

History

• A couple, Bob and Sara, share a bank account

• Both deposit $100 at same time

balance = 100

24

History

• A couple, Bob and Sara, share a bank account

• Both deposit $100 at same time

balance = 100

Account balance should be 200!
Bob and Sara lost money.

25

History

• Question: how to achieve concurrency
while maintaining data integrity?

• Insight: transactions can be concurrent,
as long as they don’t modify the same data

• Solution: locking
– Bob locks data, modifies it, releases lock

– Sara waits until lock is released

• Downside:
– transactions may need to wait for locks.

26

History

• 3 goals of database design

– Speed

– Affordability

– Resilience to system failure

27

History

• 3 goals of database design

– Speed

–Affordability

– Resilience to system failure

28

History

• Disk was cheap, but not so cheap

• 1 gigabyte for $10000 in 1980

• Avoid storing replicas of same data

ID name account-ID balance

1 Bob 1 100

2 Sara 1 100

3 Trudy 2 450

29

History

• Solution: “Normalization”. Break tables.

ID name account-ID balance

1 Bob 1 100

2 Sara 1 100

3 Trudy 2 450ID name account-ID

1 Bob 1

2 Sara 1

3 Trudy 2

ID balance

1 100

2 450

Customers Accounts

• Bonus: Easier to maintain data integrity 30

History

• Normalization:
– Saves storage space

– Easier to maintain data integrity

• Downside: reads are more expensive

– Need to join tables

ID name account-ID

1 Bob 1

2 Sara 1

3 Trudy 2

ID balance

1 100

2 450

Customers Accounts

31

History

• Data is decomposed accross tables

• Query Language: SQL

– select balance from Customers c, Accounts a
where c.account-ID = a.ID and c.name = “Bob”

ID name account-ID

1 Bob 1

2 Sara 1

3 Trudy 2

ID balance

1 100

2 450

Customers Accounts

32

History

• 3 goals of database design

– Speed

–Affordability

– Resilience to system failure

33

History

• 3 goals of database design

– Speed

– Affordability

–Resilience to system failure

34

History

• Many things can go wrong

– Power failure

– Hardware failure

– Natural disaster

• Data is precious (e.g. bank)

• Provide recovery mechanism

35

Sara’s
balance = 100
Sara’s
balance = 100

History

• Example: Sara transfers $100 to Anna

• Power stops in the middle

Anna’s
balance = 450

Sara’s
balance = 0

36

Sara’s
balance = 100

History

• Example: Sara transfers $100 to Anna

• Power stops in the middle

Anna’s
balance = 450

Sara’s
balance = 0

37

Anna’s
balance = 450
Anna’s
balance = 450

Sara’s
balance = 0

History

• Example: Sara transfers $100 to Anna

• Power stops in the middle

Anna’s
balance = 550

38

Anna’s
balance = 450
Anna’s
balance = 450

Sara’s
balance = 0

History

• Example: Sara transfers $100 to Anna

• Power stops in the middle

Anna’s
balance = 550

At this point, power fails

39

History

• Transaction: a sequence of operations all
takes place, or none take place.

• Transactions should be atomic

40

History

• Problem: how to guarantee atomicity?

• Solution: use a log (on disk)

• All data changes are recorded in the log

• After power failure, examine log

• Undo changes by unfinished transactions

Data Log

41

History

• Data integrity
– Concurrency (fix with locking)

– System failure (fix with logging)

• ACID
– Atomicity

– Consistency

– Isolation

– Durability

42

History

• Summary
– Speed

– Affordability

– Resilience to system failure

• Relational databases:
– Normalize data into multiple tables

– ACID (locking & logging)

– SQL

• Design decisions are motivated by hardware
43

Today

44

Today

• What changed in hardware?

• How does it affect database design?

45

Today

• Disk is 107 times cheaper

• Main memory is 106 times cheaper

46

Today

• Disk is now dirt cheap

• Organizations keep all historical data

• Business intelligence

• E.g. Amazon

– revenues from product X on date Y

– which products are bought together

47

Today

• Traditional system architecture:

End users
Transactional

Database
Business

Intelligence

transactions
Analytical

queries

48

Today

• Problem:

–Analytical queries are expensive
• Touch a lot of data

• Disk access

• Locks

–They slow down transactions.

–End-users wait longer

49

Today

• Solution: split database

End users
Transactional

Database
Data

warehouse
Business

Intelligence

50

Today

• Different workloads

• Different internal design

Transactional
Database Data

warehouse
51

Today

• Example analytical queries

– How long is delivery? (2 columns, all rows)

– Revenue from product X? (2 columns, all rows)

• Problem:

– Data is stored row by row

order
id

cust
id

product
id

price order
date

receipt
date

priority status comment

...

52

• Solution: column-store
– Each column is stored separately

– Good for analytical queries

– Changes entire architecture

– Examples: Vertica, Vectorwise, Greenplum, etc.

order
id

cust
id

status price order
date

receipt
date

priority clerk comment

...

Today

53

Today

• How are transactional databases affected
by hardware changes?

Transactional
Database

54

Today

• Main memory is cheaper

• Terabytes are affordable

• Enough to store all transactional data

• E.g. Amazon

– Products list

– User accounts

55

Today

• Main memory was expensive

• Now it’s cheaper

Data Log

56

Today

• Transactional databases are main memory
databases

• Bottleneck used to be disk access

• The new bottleneck is ACID (logging, locking)

Useful work

ACID

Disk access

Useful work

ACID

57

Today
• More challenges

• Due to internet, 100% availability is key

• Data is replicated

…

…

58

Today

• Joins become more expensive

ID name account-ID

1 Bob 1

2 Sara 1

3 Trudy 2

ID balance

1 100

2 450

Customers Accounts

Joins

59

Today

• Replication and locks become more expensive

Accounts Accounts

Replication, locks

ID balance

1 100

2 450

ID balance

1 100

2 450

60

Today

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking

61

Today

• NoSQL and NewSQL address these

–NoSQL simplifies

–NewSQL engineers

62

NoSQL
(MongoDB)

63

NoSQL
(MongoDB)

64
http://db-engines.com/en/ranking

NoSQL

• Name popularized in 2009

• Conference on “open source distributed non-
relational databases”

• NoSQL was a hashtag

65

NoSQL

• Different types

– Document stores

– Column-oriented

– Key-value-stores

– Graph databases

Similar

Different

66

NoSQL

• MongoDB - Main decisions

1. No joins

• Aggregate related data into “documents”
• Reduces network traffic

• Data modeling is harder

2. No ACID

• Faster

• Concurrency & system failure can corrupt data

67

NoSQL

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking

68

NoSQL

• To avoid joins, data is de-normalized

ID name account-ID

1 Bob 1

2 Sara 1

3 Trudy 2

ID balance

1 100

2 450

Customers Accounts

ID name account-ID balance

1 Bob 1 100

2 Sara 1 100

3 Trudy 2 450 69

NoSQL

• In MongoDB

• db.customers.find(name:“Sara”)

Collection of
customer
Documents

{	 name: “Bob”,
account-ID: 1,
balance: 100 }

{	name: “Sara”,
account-ID: 1,
balance: 100 }

{	 name: “Trudy”,
account-ID: 2,
balance: 450 }

70

NoSQL

• Documents are flexible

{	 name: “Bob”,
account-ID: 1,
balance: 100,
favorite-color: “red”
credit-score: 3.0

}

{	name: “Sara”,
account-ID: 1,
balance: 100
hobbies: [“rowing”, “running”]

}

71

NoSQL

• Main point: no need for joins

• All related data is in one place

72

{	 name: “Bob”,
account-ID: 1,
balance: 100,
favorite-color: “red”
credit-score: 3.0

}

NoSQL

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking

73

NoSQL

• MongoDB does not lock

• Recall Bob and Sara

• Deposit $100 at same time to shared account

• Overwrite each other’s update

No general way to prevent this

74

NoSQL

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking

75

NoSQL

• Eventual consistency

• Different operation order across replicas

• E.g. concurrent addition and multiplication

Deposit
Add 100

Interest
Multiply by 1.1

{		…
balance: 100

... }

{		…
balance: 100

... }
76

NoSQL

• Eventual consistency

• Different operation order across replicas

• E.g. concurrent addition and multiplication

Deposit
Add 100

Interest
Multiply by 1.1

{		…
balance: 100

... }

{		…
balance: 100

... }
77

NoSQL

• Eventual consistency

• Different operation order across replicas

• E.g. concurrent addition and multiplication

Deposit
Add 100

Interest
Multiply by 1.1

Inconsistent
replicas

{		…
balance: 220

... }

{		…
balance: 210

... }
78

NoSQL

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking

79

NoSQL

• When to use MongoDB?

• Non-interacting entities

– No sharing (e.g. bank account)

– No exchanging (e.g. money transfers)

• Commutative operations on data

• You need a flexible data model

80

NewSQL

81

NewSQL

• ACID & good performance

• Redesign internal architecture.

82

NewSQL

• Data is normalized into multiple tables

• Tables partitioned and replicated across machines

ID name account-ID

1 Bob 1

2 Sara 1

3 Trudy 2

ID balance

1 100

2 450

Customers Accounts

83

NewSQL

• Single machine bottlenecks:

• Multiple machines bottlenecks:

Replication, locks, joins

Logging & locking

84

NewSQL

• History: concurrent transactions were
introduced since disk was slow

• Today: Now all data is in main memory

• Transactions in main memory are fast

• Less need for concurrency

• VoltDB removes concurrency

• Thus, no need for locking

85

NewSQL

• Recall Bob and Sara

• Deposit $100 at same time to shared account

• Overwrite each other’s update

In VoltDB, this cannot happen

86

NewSQL

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking

87

NewSQL

• History: log introduced for recovery

• Today: it takes too long to recover from log

• Instead, replicate data across machines

• If one machine fails, others continue working

• Simplifies logging

88

NewSQL

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking

89

NewSQL

• Try to avoid joins across machines

• Store data that is commonly accessed at
same time on same machine

ID name account-ID

1 Bob 1

2 Sara 1

ID balance

1 100

Customers

ID name account-ID

3 Trudy 2

ID balance

2 450

Customers

AccountsAccounts

90

NewSQL

ID name account-ID

1 Bob 1

2 Sara 1

ID balance

1 100

Customers

ID name account-ID

3 Trudy 2

ID balance

2 450

Customers

AccountsAccounts

• Alleviates problem

• Does not solve it (e.g. money transfer)
91

NewSQL

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking

92

NewSQL

• Tables are replicated

• Enforce operation order across replicas

Deposit
Add 100

Interest
Multiply by 1.1

ID balance

... 100

ID balance

... 100

93

NewSQL

• Tables are replicated

• Enforce operation order across replicas

Deposit
Add 100

Interest
Multiply by 1.1

ID balance

... 100

ID balance

... 100

94

NewSQL

• Tables are replicated

• Enforce operation order across replicas

Deposit
Add 100

Interest
Multiply by 1.1

ID balance

... 200

ID balance

... 200

95

NewSQL

• Tables are replicated

• Enforce operation order across replicas

Deposit
Add 100

Interest
Multiply by 1.1

ID balance

... 200

ID balance

... 200

96

NewSQL

• Tables are replicated

• Enforce operation order across replicas

Deposit
Add 100

Interest
Multiply by 1.1

ID balance

... 200

ID balance

... 200

97

NewSQL

• Tables are replicated

• Enforce operation order across replicas

Deposit
Add 100

Interest
Multiply by 1.1

ID balance

... 220

ID balance

... 220

98

NewSQL

• Tables are replicated

• Enforce operation order across replicas

Deposit
Add 100

Interest
Multiply by 1.1

ID balance

... 220

ID balance

... 220

99

NewSQL

• Single machine bottlenecks:

• Multiple machine bottlenecks:

Replication, locks, joins

Logging & locking

100

NewSQL

• When to use VoltDB?

– run at scale

–You need 100% availability

–You need ACID

101

Conclusion

102

Conclusion

• Hardware is cheaper

103

Conclusion

Transactional
Database

Data
warehouses

104
Row-store Column-store

Conclusion

• Single machine bottlenecks:

• Multiple machines bottlenecks:

Replication, locks, joins

Logging & locking

105

Conclusion

• NoSQL adapts by simplifying

– No ACID

– No joins

• NewSQL adapts by reengineering

– ACID

– Removes concurrency

– Simplifies logging

– Smart but limited partitioning across servers

106

Conclusion

• Disclaimer: there is much more

– Scientific databases:

– Time series databases:

– Graph databases

• Caveat: rapid changes

• But hopefully now you have reasoning tools

107

Conclusion

• Thanks!

108

