HARVARD
* John A. Paulson
School of Engineering

and Applied Sciences

Moore’s Law & Amdahl's Law

HARVARD
* John A. Paulson
School of Engineering

and Applied Sciences

Race Conditions

HARVARD
* John A. Paulson
School of Engineering

and Applied Sciences

Protecting Code

John A. Paulson

School of Engineering
and Applied Sciences

— HARVARD

Deadlock

HARVARD
* John A. Paulson
School of Engineering

and Applied Sciences

Building a Thread Pool

HARVARD
* John A. Paulson
School of Engineering

and Applied Sciences

Threading a Shared Scan

HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

M OO re ,S LaW Microprocessor Transistor Counts 1971-2011 & Moore's Law

16-Core SPARC T3

Six-Core Core i7.

2,600,000,000+ . Sli::'cwﬁ X‘?O" 24.00\‘.\“ 01;)-00re;<oe\tl>vnE\;V7eslmere»EX
uak-core flanum ﬁaﬁaoé?core 2196
. 1,000,000,000+ AMD KION, . o(8<=Quad Core ltanium Tukuila
T h e n u m b e r Of tran S I Sto rS Itanium 2 with 9MB cachE%vsiRe. \;?;ﬁ}gfziacél%emn%g()l &
Core 2 Duo
- - - - Itanium 2@ ell
In a dense integrated circuit 100,000,000,
d b | 1 I Pentium 4 Barton ® Atom
oubles approximately)
c 10,000,000 twoyears Do g, penium i
every two years. : 5
o entium
[e)
@ 1,000,000~
7]
c
2
100,000
10,000
8008@
2,300 4004 RCAT1802
1971 1980 1990 2000 2011

Date of introduction

Image By Wgsimon - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15193542

HARVARD
* John A. Paulson
School of Engineering

and Applied Sciences

Amdahl’'s Law

The formula used to calculate the theoretical maximum
speed-up for a given workload.

1
Slatency (S)Z p
1_ Eai
(1=p)+-
Slatency (4)_ L 0.75 ~2.28
(1—0.75)+‘T

HARVARD
* John A. Paulson
School of Engineering

and Applied Sciences

Race Conditions

Thread 1 Thread 2
if (x == 0) if (x == 0)
TTX; ++x;

Time

John A. Paulson

— HARVARD

School of Engineering
and Applied Sciences

Race Conditions

Thread 1 Thread 2
Read X
Increment X g
=
Read X

(Nothing else to be done.)

HARVARD
* John A. Paulson
School of Engineering

and Applied Sciences

Race Conditions

Thread 1 Thread 2
Read X
é Read X
= Increment X

Increment X

HARVARD
* John A. Paulson
School of Engineering

and Applied Sciences

Mutex — mutual exclusion
Atomic Operation
Compare-and-swap (x86 CMPXCHG)

Apthreads mutex Snippet

HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

Apthreads mutex Snippet

#include <pthread.h>
pthread mutex t m;

pthread mutex init (&m, NULL);

pthread mutex lock (&m);

printf ("We got the lock!");
// Other critical code

pthread mutex unlock (&m) ;

1f (pthread mutex trylock (&m)) {
printf ("We got the lock!");
pthread mutex unlock (&m) ;

} else {
printf ("Already locked...");

}

John A. Paulson

School of Engineering
and Applied Sciences

— HARVARD

Deadlock

Thread 1 Thread 2

lock(m)
/[Do something with A

unlock(m)

Time

lock(m)

// Do something with B
unlock(m)

John A. Paulson

School of Engineering
and Applied Sciences

— HARVARD

Deadlock
Thread 1 Thread 2
lock(m_A) lock(m_B)
// Do something with A // Do something with B
unlock(m_A) _é unlock(m_B)
|_

John A. Paulson

School of Engineering
and Applied Sciences

— HARVARD

Deadlock

Thread 1

lock(m_A)
lock(m_B)
// Do something with A

// Do something with B

unlock(m_B)
unlock(m_A)

Q
£
=

Thread 2

lock(m_B)
lock(m_A)
// Do something with B

// Do something with A

unlock(m_A)
unlock(m_B)

John A. Paulson

School of Engineering
and Applied Sciences

— HARVARD

Deadlock

Thread 1

lock(m)

// Do something with B
// Do something with A

unlock(m)

Time

Thread 2

lock(m)
// Do something with A
// Do something with B

// Do something with C

unlock(m)

HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

Implementing a Thread Pool

pthread t

pthread create(pthread t *thread, const pthread attr t *attr,
void * (*start routine) (void *), void *arqg);

pthread cond t
pthread cond init (pthread cond t*,pthread condattr t*);

pthread cond wailt (pthread cond t*, pthread mutex t)
pthread cond signal (pthread cond t¥*)

Link with -1pthread

HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

Implementing a Thread Pool

// Worker thread waits for work
pthread mutex lock (m);
while ([queue is empty])
pthread cond wait(cv, m);
// Do critical something
pthread mutex unlock (m);

// Producer thread adds work and signals
pthread mutex lock (m);
// Add some work to a shared struct
pthread cond signal(cv); // wake up a thread
pthread mutex unlock (m);

John A. Paulson

School of Engineering
and Applied Sciences

— HARVARD

Threading a Shared Scan

T1 T2 T2 T1 T2

Ql, Ql, Ql, Ql, Q1l,
Q2, Q2, Q2, Q2, Q2,
Q3, Q3, Q3, Q3, Q3,

Q4 Q4 Q4 Q4 Q4

HARVARD
* John A. Paulson
School of Engineering

and Applied Sciences

Threading a Shared Scan

T2

T1
Q1,
Q2

Q3, —
Q4
—

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

