

Moore's Law & Amdahl's Law

Race Conditions
Protecting Code
Deadlock
Building a Thread Pool
Threading a Shared Scan

Moore's Law & Amdahl's Law

Race Conditions

Protecting Code
Deadlock
Building a Thread Pool
Threading a Shared Scan

Moore's Law & Amdahl's Law Race Conditions

Protecting Code

Deadlock
Building a Thread Pool
Threading a Shared Scan

Moore's Law & Amdahl's Law Race Conditions
Protecting Code

Deadlock

Building a Thread Pool
Threading a Shared Scan

Moore's Law & Amdahl's Law Race Conditions
Protecting Code
Deadlock
Building a Thread Pool

Threading a Shared Scan

Moore's Law & Amdahl's Law Race Conditions
Protecting Code
Deadlock
Building a Thread Pool
Threading a Shared Scan

Moore's Law

The number of transistors in a dense integrated circuit doubles approximately every two years.

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Amdahl's Law

The formula used to calculate the theoretical maximum speed-up for a given workload.

$$S_{latency}(s) = \frac{1}{(1-p) + \frac{p}{s}}$$

$$S_{latency}(4) = \frac{1}{(1-0.75) + \frac{0.75}{4}} \approx 2.28$$

Race Conditions

Thread 1

if
$$(x == 0)$$

++x;

Thread 2

Race Conditions

Race Conditions

Mutex → mutual exclusion

Atomic Operation

Compare-and-swap (x86 CMPXCHG)

Apthreads mutex Snippet

Apthreads mutex Snippet

```
#include <pthread.h>
pthread mutex t m;
pthread mutex init(&m, NULL);
pthread mutex lock(&m);
printf("We got the lock!");
... // Other critical code
pthread mutex unlock (&m);
if (pthread mutex trylock(&m)) {
   printf("We got the lock!");
   pthread mutex unlock (&m);
} else {
   printf("Already locked...");
```


Deadlock

Deadlock

Deadlock

Deadlock

Thread 1 lock(m) // Do something with B // Do something with A unlock(m) // Do something with A // Do something with B // Do something with C unlock(m)

Link with -lpthread

DASIab

Implementing a Thread Pool

Implementing a Thread Pool

```
// Worker thread waits for work
    pthread_mutex_lock(m);
    while ([queue_is_empty])
        pthread_cond_wait(cv, m);
    // Do critical something
    pthread_mutex_unlock(m);

// Producer thread adds work and signals
    pthread_mutex_lock(m);
    // Add some work to a shared struct
    pthread_cond_signal(cv); // wake up a thread
    pthread_mutex_unlock(m);
```


Threading a Shared Scan

Threading a Shared Scan

