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M OO re ,S LaW Microprocessor Transistor Counts 1971-2011 & Moore's Law
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Amdahl’'s Law

The formula used to calculate the theoretical maximum
speed-up for a given workload.
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Race Conditions

Thread 1 Thread 2
if (x == 0) if (x == 0)
TTX; ++x;

Time
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Race Conditions

Thread 1 Thread 2
Read X
Increment X g
=
Read X

(Nothing else to be done.)
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Race Conditions

Thread 1 Thread 2
Read X
é Read X
= Increment X

Increment X
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Mutex — mutual exclusion
Atomic Operation
Compare-and-swap (x86 CMPXCHG)

Apthreads mutex Snippet
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Apthreads mutex Snippet

#include <pthread.h>
pthread mutex t m;

pthread mutex init (&m, NULL);

pthread mutex lock (&m);

printf ("We got the lock!");
// Other critical code

pthread mutex unlock (&m) ;

1f (pthread mutex trylock (&m)) {
printf ("We got the lock!");
pthread mutex unlock (&m) ;

} else {
printf ("Already locked...");

}
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Deadlock

Thread 1 Thread 2

lock(m)
/[ Do something with A

unlock(m)

Time

lock(m)

// Do something with B
unlock(m)
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Deadlock
Thread 1 Thread 2
lock(m_A) lock(m_B)
// Do something with A // Do something with B
unlock(m_A) _é unlock(m_B)
|_
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Deadlock

Thread 1

lock(m_A)
lock(m_B)
// Do something with A

// Do something with B

unlock(m_B)
unlock(m_A)

Q
£
=

Thread 2

lock(m_B)
lock(m_A)
// Do something with B

// Do something with A

unlock(m_A)
unlock(m_B)
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Deadlock

Thread 1

lock(m)

// Do something with B
// Do something with A

unlock(m)

Time

Thread 2

lock(m)
// Do something with A
// Do something with B

// Do something with C

unlock(m)
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Implementing a Thread Pool

pthread t

pthread create(pthread t *thread, const pthread attr t *attr,
void * (*start routine) (void *), void *arqg);

pthread cond t
pthread cond init (pthread cond t*,pthread condattr t*);

pthread cond wailt (pthread cond t*, pthread mutex t)
pthread cond signal (pthread cond t¥*)

Link with -1pthread
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Implementing a Thread Pool

// Worker thread waits for work
pthread mutex lock (m);
while ([queue is empty])
pthread cond wait(cv, m);
// Do critical something
pthread mutex unlock (m);

// Producer thread adds work and signals
pthread mutex lock (m);
// Add some work to a shared struct
pthread cond signal(cv); // wake up a thread
pthread mutex unlock (m);
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Threading a Shared Scan

T1 T2 T2 T1 T2

Ql, Ql, Ql, Ql, Q1l,
Q2, Q2, Q2, Q2, Q2,
Q3, Q3, Q3, Q3, Q3,

Q4 Q4 Q4 Q4 Q4
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Threading a Shared Scan

T2

T1
Q1,
Q2

Q3, —
Q4
—
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