
daslab.seas.harvard.edu lab

E-Tree:	An	Ever-Evolving	Tree	for	Evolving	Workloads
Graham	Lustiber Advisor:	Stratos Idreos

Cache-Conscious 
Tree

Read OptimizedWrite Optimized

E-Tree

Low Overhead
Simple counters on each node with sampling

Key Idea: Mixed memory 
layouts for mixed 
workloads across different 
key/value subranges

B+-Tree

Best of Both Worlds

T0: 95% Writes/5% Read

Flexible
No restriction on concurrency or operations

Automatic Optimality
Convergence to optimal memory layout

T1: 70% Writes/30% Reads T2: 40% Writes/60% Reads

By tracking access 
patterns, subtrees
dynamically reshape

Setup: 2 billion key/value pairs, with queries to key 
subranges either read-skewed or write-skewed

Shifting workloads: E-Tree adapts to new 
access patterns

Split workloads: the more skewed the 
subranges, the better E-Tree performs

Setup: same as before, but subrange skews randomly flip 
from read-skewed to write-skewed and vice versa

Splaying	LSM-Trees T.	Lively,	L.	Schroeder,	C.	Mendizábal
Advisor:	Stratos Idreos

The	Problem:	LSM-Trees	Have	Suboptimal	Read	Performance

Recently	updated	keys	
are	the	cheapest	to	access

…but	these	keys	are	not	necessarily
most	likely	to	be	read	next

Copy	frequently	accessed	keys	to	top
Use	’get’	as	a	trigger	for	possible	‘put’

…and	over	time	the	tree	is	reorganized	
for	better	read	performance

Compared	with	the	state-of-the-art	solution	of	adding	a	cache:

…and	can	offer	adaptivity and	better
performance	across	workloads	

Splaying	dominates	cache	
in	the	absence	of	Bloom	Filters

The	Solution:	Splaying


