HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

Workload-Adaptive Filtering in Storage Engines

Joshua Pan | Advised by Brian Hentschel and Stratos Idreos

The Problem: LSM-tree storage engines suffer with empty queries and skew workloads

f . \ \ (Empty Queries) [. \
Iy lookup bloom filters
key X v X
@ O l memory disk v X v
P buffer) filters ferce g i oo
‘=’ .
) Y Queries for Older Data nonexistent key X x1000000 FPR:p ‘
false /x_\ m
positive Y X look 0
v x OOKU)
> —-p;;‘i’ﬁve /—\X v x nonexistent key Y xt FPR:p
RocksDB g -
LSM-tree based storage LSM-tree performance relieg on filters Common queries incur Repeated queries are a problem for current
k engines are everywhere) \ to prevent unnecessary disk 1/Os) many unnecessary I/Os \storage engines and call for adaptivity)

Our Contribution: Cache-Backed Bloom Filters (CBBFs)
Y4

(-)

lookup
key X My classmates o o
"Alice” —— "David" is possibly in the set
l "Bob" ‘\—/
V + - Positive set Bloom Filter Cache X (alse positive
= l (2) When a false positive occurs for the first time
Bloom Filter Cache V
l David® | — "David" is not in the set
Bloom Filter
false positive (1) Construct i
’ Bloom Filter Cache
Main idea: remember bloom filter’s false bloom filter upon o . _
positives in a fixed-size cache (hashtable) JAG positive set (3) When a false positive is queried again

G
[

VAN

Y4 Y4

CBBF’s cache becomes ‘
full over time N 1-slot buckets

Bl i

N/M M-slot buckets

Y

Bloom Filter
9.8 bits/element

-
R—
S —

"Wendy" | “Victor" | "David"

Cache

+ 0.2 bits/element

2nd Most recently queried

"Wendy' | "Victor' | Eve" —— "Eve" is probably in the set

‘\/

false positive

FPR
4 FPR

Tuning CBBFs: How to allocate memory
between bloom filter and cache?

Fewer slots *

More slots

Cache
Evicted slot

Existing false positives are evicted
on hash collision

Least recently used (LRU) eviction policy to retain frequently
\ queried false positives in the cache with high probability)

G J G

End-to-End Storage Engine Throughput Improvement
\(Y4
Y+ 8

J

é)

. BF
/ CBBF 1000000 CBBF 0,008 i i
_ Standard Bloom Filter
£ 800000
\ b 0.006 10 bits/element
Cosine & sooo0o « FPR: 0.008194
Bloom filter £ = 0004
2 400000
2
Iqokupk x : 200000 0.002 Bloom Filter Cache
nonexistent key 9.8 bits/element + 0.2 bits/element
o 0.000 FPR: 0.009031 5% worse throughput

High Skew slight skew High Skew slight Skew

Zipfian distribution

G
HARVARD

10 million empty queries

Near identical performance to
bloom filters in worst case

DAS

@ Harvard SEAS

Experimental Setup \ CBBFs perform better than standard bloom filters when queries repeat)

J

John A. Paulson
School of Engineering
and Applied Sciences

daslab.seas.harvard.edu

