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The Problem: LSM-tree storage engines suffer with empty queries and skew workloads
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Our Contribution: Cache-Backed Bloom Filters (CBBFs)
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Tuning CBBFs: How to allocate memory
between bloom filter and cache?
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Least recently used (LRU) eviction policy to retain frequently
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End-to-End Storage Engine Throughput Improvement
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10 million empty queries

Near identical performance to
bloom filters in worst case
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Experimental Setup \ CBBFs perform better than standard bloom filters when queries repeat )
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