
Workload-Adaptive Filtering in Storage Engines
Joshua Pan | Advised by Brian Hentschel and Stratos Idreos

daslab.seas.harvard.edu lab
@ Harvard SEAS

The Problem: LSM-tree storage engines suffer with empty queries and skew workloads

Our Contribution: Cache-Backed Bloom Filters (CBBFs)

End-to-End Storage Engine Throughput Improvement

LSM-tree based storage 
engines are everywhere

LSM-tree performance relies on filters 
to prevent unnecessary disk I/Os

Common queries incur 
many unnecessary I/Os

Main idea: remember bloom filter’s false 
positives in a fixed-size cache (hashtable)

Repeated queries are a problem for current 
storage engines and call for adaptivity

CBBFs perform better than standard bloom filters when queries repeat
Near identical performance to 

bloom filters in worst case

Positive set

(2) When a false positive occurs for the first time

(3) When a false positive is queried again

Tuning CBBFs: How to allocate memory 
between bloom filter and cache?

Least recently used (LRU) eviction policy to retain frequently 
queried false positives in the cache with high probability

Existing false positives are evicted 
on hash collision

(1) Construct 
bloom filter upon 

positive set

Experimental Setup

CBBF’s cache becomes 
full over time


