
B-Tree -> LSM-Tree
Similar underlying structure: indexes in memory, data on disk

Primary difference: contiguous run (LSM-Tree) versus fragmented leaves (B-Tree)

copy data from B-Tree leaves to
create contiguous bottom run of an
LSM tree; re-construct indexes
(bloom filters)

Straightforward
approach

Bloom
Filter

daslab.seas.harvard.edu

J. Lennon, V. Jain, H. Gupta

Advisor: Stratos Idreos

LSM-Trees and B-Trees:
The Best of Both Worlds

The Solution: Transitions
LSM-Tree -> B-Tree

Memory Persistent
Storage

Sort in Memory

...

R e p e a t e d l y
r e m o v e t h e k
blocks of entries
with lowest keys
from the LSM-Tree
and append them
to the end of the
B-Tree leaf level.

LSM tree “page IDs” mapped to
B-Tree’s physical pages

Optimized
Approach

in-memory
indirection to

“trick” LSM tree

bloom filter
maintained for
B-Tree as well

...

Insert in Batches

Convert the lowest
level of the LSM-
Tree into a B-Tree,
avoiding disk IO.
Then repeatedly
insert batches of k
blocks of entries
with the lowest
keys into the B-
Tree.

OR

Key-Value Stores Today Are Suboptimal for Dynamic Workloads

NoSQL key-value
stores are widely
popular today.

B-Tree

LSM-Tree

LSM-Tree and B-Tree data
structures commonly back
key-value stores.

LSM-Trees

Updates

Long-range scans

Point Lookups

Short-range scans

B-Trees

Modern workloads change

+
DB made for one workload

=

Greater offline maintenance Lost query efficiency

.

DB

Update Heavy
Workload

Lookup Heavy

Workload

write heavy read heavy write heavy

B-Tree -> LSM-Tree LSM-Tree -> B-Tree

LSM-Tree B-Tree
LSM-Tree

Pivot

Intermediate

B-Tree

1 2 3

When transitioning from an LSM-Tree to a B-Tree, the transition cost can be amortized
over an arbitrary number of steps. We maintain a hybrid key-value store to handle
queries while the transition is in progress.

When transitioning from a B-Tree to an LSM-Tree, gradual transitions aren't necessary
since this is a cheap, in-memory operation.

Our implementation of this hybrid data structure proves that transitioning
databases can provide superior query performance on dynamic workloads than
classic LSM or B-Trees can.

Transitioning Outperforms B-Trees and LSM Trees

LSM TreeLSM Tree

Gradual Transitions Enable Low Overhead

crimsondb.org

An optimal data structure design is
determined by the specific
workload distribution.

Key-value stores optimized for one fixed
workload are suboptimal for dynamic
modern applications.

Our goal is to achieve the best
latency on changing workloads
with on the fly transitions.

Cost Model to Choose the Optimal LSM-Tree to B-Tree Transition

Sort-Merge Cost =
num levels

∑
i=1

⌈ bytes in ith levelpage size ⌉ ⋅ (1 +
write cost
read cost)

Batch-Insert Cost = ⌈ bytes in lowest levelpage size ⌉ +
num levels−1

∑
i=1

bytes in ith level ⋅ (1 + 2 ⋅
write cost
read cost)

Denoting � as the ratio of IO write to read cost, � as the entry size in bytes, and �
as the number of entries per page, we find an elegant condition for when we ought
to prefer the batch-insert algorithm over the sort-merge algorithm.

ϕ d p

bytes in upper levels
bytes in lowest level

<
d ⋅ ϕ

p + (2 ⋅ p − d) ⋅ ϕ

We compare the IO costs of the two transition approaches described above.

