
Meena Jagadeesan and Garrett Tanzer | Advised by Subarna Chatterjee, Stratos Idreos

From Worst-Case to Average-Case Analysis: Accurate
Latency Predictions for Key-Value Storage Engines

daslab.seas.harvard.edu

size ratio?
buffer size?

fanout?
node size?

Distribution-
Aware Cost

Model

Workload
I/Os

AVERAGE-CASE ANALYSIS: A Distribution-Aware Framework

𝐶୥ୣ୲ = (1 − 𝐶ୠ୳୤୤ୣ୰) + ෍ 𝑝௜ ∗ 𝐶௜

௅

௜ୀଵ

VERIFICATION: Key-Value StoresEXAMPLE: Get Cost on LSM

ℙ[key in buffer]

“Early stopping”

Compare designs Automate selection Search design space Create self-designing storage engine

USE CASES: How can these models be utilized?

False positive rate

10 mil keys; workload (20,000 ops): 50% reads/50% writes

ℙ[“false” access at level i]

RocksDB
High skew

RocksDB
Medium
skew

RocksDB
Low skew

WT
High skew

WT
Medium
skew

WT
Low skew

Distribution-aware model captures workload I/Os!

ℙ[query ongoing at level i]

many storage engines,
many knobs

Bloom
filters

Unified

Access pattern

Pr
ob

ab
ilit

y

Distributions Operations Configuration
Workload Feature Vector Storage Engine

Operation type

Fr
eq

ue
nc

y get

range

filter memory = 2GB

size ratio = 10

buffer size = 1GB

engine = RocksDB

THE GOAL: Which storage engine and tuning is best for an application?
Put((5, -10)), Get(5), Put((7, -17)), Get(10), Get(5), Get(7), Get(10), Put((5, -17))

put

