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AVERAGE-CASE ANALYSIS: A Distribution-Aware Framework 
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VERIFICATION: Key-Value StoresEXAMPLE: Get Cost on LSM

ℙ[key in buffer]

“Early stopping”

Compare designs         Automate selection Search design space        Create self-designing storage engine  

USE CASES: How can these models be utilized?

False positive rate

10 mil keys; workload (20,000 ops): 50% reads/50% writes
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Distribution-aware model captures workload I/Os! 
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filter memory = 2GB

size ratio = 10

buffer size = 1GB 

engine = RocksDB

THE GOAL: Which storage engine and tuning is best for an application?
Put((5, -10)), Get(5), Put((7, -17)), Get(10), Get(5), Get(7), Get(10), Put((5, -17))
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